Motivation:
Currently in EmbeddedChannel we add the ChannelHandlers before the Channel is registered which leads to have the handlerAdded(...) callback
be called from outside the EventLoop and also prevent the user to obtain a reference to the EventLoop in the callback itself.
Modifications:
Delay adding ChannelHandlers until EmbeddedChannel is registered.
Result:
Correctly call handlerAdded(...) after EmbeddedChannel is registered.
Motivation:
If you set a ChannelHandler via ServerBootstrap.handler(...) it is added to the ChannelPipeline before the Channel is registered. This will lead to and IllegalStateException if a user tries to access the EventLoop in the ChannelHandler.handlerAdded(...) method.
Modifications:
Delay the adding of the ChannelHandler until the Channel was registered.
Result:
No more IllegalStateException.
Motivation:
SingleThreadEventLoopTest.testScheduleTaskAtFixedRate() fails often due to:
- too little tolerance
- incorrect assertion (it compares only with the previous timestamp)
Modifications:
- Increase the timestamp difference tolerance from 10ms to 20ms
- Improve the timestamp assertion so that the comparison is performed against the first recorded timestamp
- Misc: Fix broken Javadoc tag
Result:
More build stability
Motivation:
Many projects need some kind a Channel/Connection pool implementation. While the protocols are different many things can be shared, so we should provide a generic API and implementation.
Modifications:
Add ChannelPool / ChannelPoolMap API and implementations.
Result:
Reusable / Generic pool implementation that users can use.
Motivation:
At the moment when EmbeddedChannel is used and a ChannelHandler tries to schedule and task it will throw an UnsupportedOperationException. This makes it impossible to test these handlers or even reuse them with EmbeddedChannel.
Modifications:
- Factor out reusable scheduling code into AbstractSchedulingEventExecutor
- Let EmbeddedEventLoop and SingleThreadEventExecutor extend AbstractSchedulingEventExecutor
- add EmbbededChannel.runScheduledPendingTasks() which allows to run all scheduled tasks that are ready
Result:
Embeddedchannel is now usable even with ChannelHandler that try to schedule tasks.
Motivation:
We should allow to get a ChannelOption/AttributeKey from a String. This will make it a lot easier to make use of configuration files in applications.
Modifications:
- Add exists(...), newInstance(...) method to ChannelOption and AttributeKey and alter valueOf(...) to return an existing instance for a String or create one.
- Add unit tests.
Result:
Much more flexible usage of ChannelOption and AttributeKey.
Related:
- 375b9e1307
Motivation:
Even if a handler called ctx.fireChannelReadComplete(), the next handler
should not get its channelReadComplete() invoked if fireChannelRead()
was not invoked before.
Modifications:
- Ensure channelReadComplete() is invoked only when the handler of the
current context actually produced a message, because otherwise there's
no point of triggering channelReadComplete().
i.e. channelReadComplete() must follow channelRead().
- Fix a bug where ctx.read() was not called if the handler of the
current context did not produce any message, making the connection
stall. Read the new comment for more information.
Result:
- channelReadComplete() is invoked only when it makes sense.
- No stale connection
Motivation:
Because of a re-entrance bug in PendingWriteQueue it was possible to get the queue corrupted and also trigger an IllegalStateException caused by multiple recycling of the internal PendingWrite objects.
Modifications:
- Correctly guard against re-entrance
Result:
No more IllegalStateException possible
Motivation:
ctx.fireChannelReadComplete() should only be called if something is produced during a channelRead(...) operation. Also we must ensure that it will be called
if channelRead(...) produced something at some point as channelRead(...) maybe called multiple times by the transport before channelReadComplete(...) is called.
Modifications:
- Ensure channelReadComplete(...) only triggers ctx.fireChannelReadComplete() when a previous channelRead(...) call produced a message
- Ensure read() is called of more data is needed
Result:
Correct semantic with channelReadComplete(...) events and also ensure no stales
Related: #3212
Motivation:
When SslHandler and ChunkedWriteHandler exists in a pipeline together,
it is possible that ChunkedWriteHandler.channelWritabilityChanged()
invokes SslHandler.flush() and vice versa. Because they can feed each
other (i.e. ChunkedWriteHandler.channelWritabilityChanged() ->
SslHandler.flush() -> ChunkedWriteHandler.channelWritabilityChanged() ->
..), they can fall into an inconsistent state due to reentrance (e.g.
bad MAC record at the remote peer due to incorrect ordering.)
Modifications:
- Trigger channelWritabilityChanged() using EventLoop.execute() when
there's a chance where channelWritabilityChanged() can cause a
reentrance issue
- Fix test failures caused by the modification
Result:
Fix the handler reentrance issues related with a
channelWritabilityChanged() event
Related: #3212
Motivation:
PendingWriteQueue.recycle() updates its data structure after triggering
a channelWritabilityChanged() event. It causes a rare corruption such as
double free when channelWritabilityChanged() method accesses the
PendingWriteQueue.
Modifications:
Update the state of PendingWriteQueue before triggering an event.
Result:
Fix a rare double-free problem
Motivation:
AbstractUnsafe considers two possibilities during channel registration. First,
the channel may be an outgoing connection, in which case it will be registered
before becoming active. Second, the channel may be an incoming connection in,
which case the channel will already be active when it is registered. To handle
the second case, AbstractUnsafe checks if the channel is active after
registration and calls ChannelPipeline.fireChannelActive() if so. However, if
an active channel is deregistered and then re-registered this logic causes a
second fireChannelActive() to be invoked. This is unexpected; it is reasonable
for handlers to assume that this method will only be invoked once per channel.
Modifications:
This change introduces a flag into AbstractUnsafe to recognize if this is the
first or a subsequent registration. ChannelPipeline.fireChannelActive() is only
possible for the first registration.
Result:
ChannelPipeline.fireChannelActive() is only called once.
Related: #2945
Motivation:
Some special handlers such as TrafficShapingHandler need to override the
writability of a Channel to throttle the outbound traffic.
Modifications:
Add a new indexed property called 'user-defined writability flag' to
ChannelOutboundBuffer so that a handler can override the writability of
a Channel easily.
Result:
A handler can override the writability of a Channel using an unsafe API.
For example:
Channel ch = ...;
ch.unsafe().outboundBuffer().setUserDefinedWritability(1, false);
Motivation:
We used the wrong EventExecutor to notify for bind failures if a late registration was done.
Modifications:
Use the correct EventExecutor to notify and only use the GlobelEventExecutor if the registration fails itself.
Result:
The correct Thread will do the notification.
Motivation:
Because of an incorrect logic in teh EmbeddedChannel constructor it is not possible to use EmbeddedChannel with a ChannelInitializer as constructor argument. This is because it adds the internal LastInboundHandler to its ChannelPipeline before it register itself to the EventLoop.
Modifications:
First register self to EventLoop before add LastInboundHandler to the ChannelPipeline.
Result:
It's now possible to use EmbeddedChannel with ChannelInitializer.
Motivation:
Sometimes ChannelHandler need to queue writes to some point and then process these. We currently have no datastructure for this so the user will use an Queue or something like this. The problem is with this Channel.isWritable() will not work as expected and so the user risk to write to fast. That's exactly what happened in our SslHandler. For this purpose we need to add a special datastructure which will also take care of update the Channel and so be sure that Channel.isWritable() works as expected.
Modifications:
- Add PendingWriteQueue which can be used for this purpose
- Make use of PendingWriteQueue in SslHandler
Result:
It is now possible to queue writes in a ChannelHandler and still have Channel.isWritable() working as expected. This also fixes#2752.
Motivation:
We expose ChannelOutboundBuffer in Channel.Unsafe but it is not possible
to create a new ChannelOutboundBuffer without an AbstractChannel. This
makes it impossible to write a Channel implementation that does not
extend AbstractChannel.
Modifications:
- Change ChannelOutboundBuffer to take a Channel as constructor argument.
- Add javadocs
Result:
ChannelOutboundBuffer can be used with a Channel implemention that does
not extend AbstractChannel.
Motiviation:
ChannelOuboundBuffer uses often too much memory. This is especially a problem if you want to serve a lot of connections. This is due the fact that it uses 2 arrays internally. One if used as a circular buffer and store the Entries that are never released (ChannelOutboundBuffer is pooled) and one is used to hold the ByteBuffers that are used for gathering writes.
Modifications:
Rewrite ChannelOutboundBuffer to remove these two arrays by:
- Make Entry recyclable and use it as linked Node
- Remove the circular buffer which was used for the Entries as we use a Linked-List like structure now
- Remove the array that did hold the ByteBuffers and replace it by an ByteBuffer array that is hold by a FastThreadLocal. We use a fixed capacity of 1024 here which is fine as we share these anyway.
- ChannelOuboundBuffer is not recyclable anymore as it is now a "light-weight" object. We recycle the internally used Entries instead.
Result:
Less memory footprint and resource usage. Performance seems to be a bit better but most likely as we not need to expand any arrays anymore.
Benchmark before change:
[nmaurer@xxx]~% wrk/wrk -H 'Host: localhost' -H 'Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8' -H 'Connection: keep-alive' -d 120 -c 256 -t 16 --pipeline 256 http://xxx:8080/plaintext
Running 2m test @ http://xxx:8080/plaintext
16 threads and 256 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 26.88ms 67.47ms 1.26s 97.97%
Req/Sec 191.81k 28.22k 255.63k 83.86%
364806639 requests in 2.00m, 48.92GB read
Requests/sec: 3040101.23
Transfer/sec: 417.49MB
Benchmark after change:
[nmaurer@xxx]~% wrk/wrk -H 'Host: localhost' -H 'Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8' -H 'Connection: keep-alive' -d 120 -c 256 -t 16 --pipeline 256 http://xxx:8080/plaintext
Running 2m test @ http://xxx:8080/plaintext
16 threads and 256 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 22.22ms 17.22ms 301.77ms 90.13%
Req/Sec 194.98k 41.98k 328.38k 70.50%
371816023 requests in 2.00m, 49.86GB read
Requests/sec: 3098461.44
Transfer/sec: 425.51MB
Motivation:
ChannelOutboundBuffer is basically a circular array queue of its entry
objects. Once an entry is created in the array, it is never nulled out
to reduce the allocation cost.
However, because it is a circular queue, the array almost always ends up
with as many entry instances as the size of the array, regardless of the
number of pending writes.
At worst case, a channel might have only 1 pending writes at maximum
while creating 32 entry objects, where 32 is the initial capacity of the
array.
Modifications:
- Reduce the initial capacity of the circular array queue to 4.
- Make the initial capacity of the circular array queue configurable
Result:
We spend 4 times less memory for entry objects under certain
circumstances.
Motivation:
When a bind fails AbstractBootstrap will use the GlobalEventExecutor to notify the ChannelPromise. We should use the EventLoop of the Channel if possible.
Modification:
Use EventLoop of the Channel if possible to use the correct Thread to notify and so guaranteer the right order of events.
Result:
Use the correct EventLoop for notification
Motivation:
LocalServerChannel.doClose() calls LocalChannelRegistry.unregister(localAddress); without check if localAddress is null and so produce a NPE when pass null the used ConcurrentHashMapV8
Modification:
Check for localAddress != null before try to remove it from Map. Also added a unit test which showed the stacktrace of the error.
Result:
No more NPE during doClose().
Motivation:
At the moment AbstractBoostrap.bind(...) will always use the GlobalEventExecutor to notify the returned ChannelFuture if the registration is not done yet. This should only be done if the registration fails later. If it completes successful we should just notify with the EventLoop of the Channel.
Modification:
Use EventLoop of the Channel if possible to use the correct Thread to notify and so guaranteer the right order of events.
Result:
Use the correct EventLoop for notification
Motivation:
Each of DefaultChannelPipeline instance creates an head and tail that wraps a handler. These are used to chain together other DefaultChannelHandlerContext that are created once a new ChannelHandler is added. There are a few things here that can be improved in terms of memory usage and initialization time.
Modification:
- Only generate the name for the tail and head one time as it will never change anyway
- Rename DefaultChannelHandlerContext to AbstractChannelHandlerContext and make it abstract
- Create a new DefaultChannelHandlerContext that is used when a ChannelHandler is added to the DefaultChannelPipeline
- Rename TailHandler to TailContext and HeadHandler to HeadContext and let them extend AbstractChannelHandlerContext. This way we can save 2 object creations per DefaultChannelPipeline
Result:
- Less memory usage because we have 2 less objects per DefaultChannelPipeline
- Faster creation of DefaultChannelPipeline as we not need to generate the name for the head and tail
Motivation:
On some ill-configured systems, InetAddress.getLocalHost() fails. NioSocketChannelTest calls java.net.Socket.connect() and it internally invoked InetAddress.getLocalHost(), which causes the test failures in NioSocketChannelTes on such an ill-configured system.
Modifications:
Use NetUtil.LOCALHOST explicitly.
Result:
NioSocketChannelTest should not fail anymore.
Motivation:
DefaultChannelPipeline.firstContext() should return null when the ipeline is empty. This is not the case atm.
Modification:
Fix incorrect check in DefaultChannelPipeline.firstContext() and add unit tests.
Result:
Correctly return null when DefaultChannelPipeline.firstContext() is called on empty pipeline.
Motivation:
As discussed in #2250, it will become much less complicated to implement
deregistration and reregistration of a channel once #2250 is resolved.
Therefore, there's no need to deprecate deregister() and
channelUnregistered().
Modification:
- Undeprecate deregister() and channelUnregistered()
- Remove SuppressWarnings annotations where applicable
Result:
We (including @jakobbuchgraber) are now ready to play with #2250 at
master
Motivation:
I had the NioSocketChannelTest.testFlushCloseReentrance() fail sometimes on one of my linux installation. This change let it pass all the time.
Modification:
Set the SO_SNDBUF to a small value to force split writes
Result:
Test is passing all the time where it was sometimes fail before.
Motivation:
At the moment it is not possible to deregister a LocalChannel from its EventLoop and register it to another one as the LocalChannel is closed during the deregister.
Modification:
Not close the LocalChannel during dergister
Result:
It is now possible to deregister a LocalChannel and register it to another EventLoop
Motivation:
At the moment it is possible to see a NPE when the LocalSocketChannels doRegister() method is called and the LocalSocketChannels doClose() method is called before the registration was completed.
Modifications:
Make sure we delay the actual close until the registration task was executed.
Result:
No more NPE
Motivation:
At the moment an IllegalArgumentException will be thrown if a ChannelPromise is cancelled while propagate through the ChannelPipeline. This is not correct, we should just stop to propagate it as it is valid to cancel at any time.
Modifications:
Stop propagate the operation through the ChannelPipeline once a ChannelPromise is cancelled.
Result:
No more IllegalArgumentException when cancel a ChannelPromise while moving through the ChannelPipeline.
- Fixes#2060
- Ensure to return a future/promise implementation that does not fail with 'not registered to an event loop' error for registration operations
- If there is no usable event loop available, GlobalEventExecutor.INSTANCE is used as a fallback.