Motivation:
We used Recycler for the CodecOutputList which is not optimized for the use-case of access only from the same Thread all the time.
Modifications:
- Use FastThreadLocal for CodecOutputList
- Add benchmark
Result:
Less overhead in our codecs.
Motivation:
It would be good to provide a docker image for people that want to build netty on linux.
Modifications:
Add a docker file
Result:
People can more easily build netty. Fixes [#7585].
Motivation:
Depending on the implementation of ByteBuf nioBuffer(...) and nioBuffers(...) may either share the content or return a ByteBuffer that contains a copy of the content.
Modifications:
Fix javadocs.
Result:
Correct docs.
Motivation:
Calling ByteBuf.toString(Charset) on the same buffer from multiple threads at the same time produces unexpected results, such as various exceptions and/or corrupted output. This is because ByteBufUtil.decodeString(...) is taking the source ByteBuffer for CharsetDecoder.decode() from ByteBuf.internalNioBuffer(int, int), which is not thread-safe.
Modification:
Call ByteBuf.nioBuffer() instead of ByteBuf.internalNioBuffer() to get the source buffer to pass to CharsetDecoder.decode().
Result:
Fixes the possible race condition.
Motivation:
ObjectCleaner inovkes a Runnable which may execute user code (FastThreadLocal#onRemoval) and therefore exceptions maybe thrown. If an exception is thrown the cleanup thread will exit prematurely and we may never finish cleaning up which will result in leaks.
Modifications:
- ObjectCleaner should suppress exceptions and continue cleaning
Result:
ObjectCleaner will reliably clean despite exceptions being thrown.
Motivation:
ObjectCleaner polls a ReferenceQueue which will block indefinitely. However it is possible there is a race condition between the live set of objects being empty due to the WeakReference being cleaned/cleared and polling the queue. If this situation occurs the cleanup thread may never unblock if no more objects are added to the live set, and may result in an application's failure to gracefully close.
Modifications:
- ReferenceQueue.remove should use a timeout to compensate for the race condition, and avoid dead lock
Result:
No more dead lock in ObjectCleaner when polling the ReferenceQueue.
Motivation:
We should fail fast when DefaultChannelPromise is constructed with null as Channel as otherwise it will fail with a NPE once we call setSuccess / setFailure.
Modifications:
Add null check and test.
Result:
Fail fast.
Motivation:
According to RFC 1952, concatenation of valid gzip streams is also a valid gzip stream. JdkZlibDecoder only processed the first and discarded the rest.
Modifications:
- Introduced a constructor argument decompressConcatenated that if true, JdkZlibDecoder would continue to process the stream.
Result:
- If 'decompressConcatenated = true', concatenated streams would be processed in
compliance to RFC 1952.
- If 'decompressConcatenated = false' (default), existing behavior would remain.
Motivation:
We did not correctly take the position into account when wrapping a ByteBuffer via ReadOnlyUnsafeDirectByteBuf as we obtained the memory address from the original ByteBuffer and not the slice we take.
Modifications:
- Correctly use the slice to obtain memory address.
- Add test case.
Result:
Fixes [#7565].
Motivation:
We recently removed support for renegotiation, but there are still some hooks to attempt to allow remote initiated renegotiation to succeed. The remote initated renegotiation can be even more problematic from a security stand point and should also be removed.
Modifications:
- Remove state related to remote iniated renegotiation from OpenSslEngine
Result:
More renegotiation code removed from the OpenSslEngine code path.
Motivation:
When using netty on android or with for example a IBM JVM it may not be able to build a SslContext as we hardcoded the use of JKS and SunX509 (which both may not be present).
Modifications:
- Use the default algorithm / type which can be override via a System property
- Remove System property check as its redundant with KeyManagerFactory.getDefaultAlgorithm()
Result:
More portable code. Fixes [#7546].
Motivation:
SSL.setState() has gone from openssl 1.1. Calling it is, and probably
always has been, incorrect. Doing renogitation in this manner is
potentially insecure. There have been at least two insecure
renegotiation vulnerabilities in users of the OpenSSL library.
Renegotiation is not necessary for correct operation of the TLS protocol.
BoringSSL has already eliminated this functionality, and the tests
(now deleted) were not running on BoringSSL.
Modifications:
If the connection setup has completed, always return that
negotiation is not supported. Previously this was done only if we were
the client.
Remove the tests for this functionality.
Fixes#6320.
Motivation:
At the moment we use netty.io as BAD_HOST with an port that we know is timing out. This may change in the future so we should better use 198.51.100.254 which is specified as "for documentation only".
Modifications:
Replace netty.io with 198.51.100.254 in tests that depend on BAD_HOST.
Result:
More future proof code.
Motivation:
Our tests are often asynchronous and have timeouts to avoid hanging indefinitely. However sometimes the timeouts maybe set to low for the CI servers. It would be helpful to confirm if the application was busy with GC and if that was a contributing factor to the test timing out.
Modifications:
- Unit tests should run with -XX:+PrintGCDetails by default
Result:
More visibility into GC behavior in unit tests.
Motivation:
FastThreadLocal#set calls isIndexedVariableSet to determine if we need to register with the cleaner, but the set(InternalThreadLocalMap, V) method will also internally do this check so we can share code and only do the check a single time.
Modifications:
- extract code from set(InternalThreadLocalMap, V) so it can be called externally to determine if a new item was created
Result:
Less code duplication in FastThreadLocal#set.
Motivation:
e329ca1 introduced the user of ObjectCleaner in FastThreadLocal but we missed the case to register our cleaner task if FastThreadLocal.set was called only.
Modifications:
- Use ObjectCleaner also when FastThreadLocal.set is used.
- Add test case.
Result:
ObjectCleaner is always used.
Motivation:
There is no guarantee that FastThreadLocal.onRemoval(...) is called if the FastThreadLocal is used by "non" FastThreacLocalThreads. This can lead to all sort of problems, like for example memory leaks as direct memory is not correctly cleaned up etc.
Beside this we use ThreadDeathWatcher to check if we need to release buffers back to the pool when thread local caches are collected. In the past ThreadDeathWatcher was used which will need to "wakeup" every second to check if the registered Threads are still alive. If we can ensure FastThreadLocal.onRemoval(...) is called we do not need this anymore.
Modifications:
- Introduce ObjectCleaner and use it to ensure FastThreadLocal.onRemoval(...) is always called when a Thread is collected.
- Deprecate ThreadDeathWatcher
- Add unit tests.
Result:
Consistent way of cleanup FastThreadLocals when a Thread is collected.
Motivation:
We should remove the WeakOrderedQueue from the WeakHashMap directly if possible and only depend on the semantics of the WeakHashMap if there is no other way for us to cleanup it.
Modifications:
Override onRemoval(...) to remove the WeakOrderedQueue if possible.
Result:
Less overhead and quicker collection of WeakOrderedQueue for some cases.
Motivation:
In our Recycler implementation we store a reference to the current Thread in the Stack that is stored in a FastThreadLocal. The Stack itself is referenced in the DefaultHandle itself. A problem can arise if a user stores a Reference to an Object that holds a reference to the DefaultHandle somewhere and either not remove the reference at all or remove it very late. In this case the Thread itself can not be collected as its still referenced in the Stack that is referenced by the DefaultHandle.
Modifications:
- Use a WeakReference to store the reference to the Thread in the Stack
- Add a test case
Result:
Ensure a Thread can be collected in a timely manner in all cases even if it used the Recycler.
Motivation:
We used subList in CompositeByteBuf to remove ranges of elements from the internal storage. Beside this we also used an foreach loop in a few cases which will crate an Iterator.
Modifications:
- Use our own sub-class of ArrayList which exposes removeRange(...). This allows to remove a range of elements without an extra allocation.
- Use an old style for loop to iterate over the elements to reduce object allocations.
Result:
Less allocations.
Motivation:
ThreadDeathWatcher and GlobalEventExecutor may create and start a new thread from various other threads and so inherit the classloader. We need to ensure we not inherit to allow recycling the classloader.
Modifications:
Use Thread.setContextClassLoader(null) to ensure we not hold a strong reference to the classloader and so not leak it.
Result:
Fixes [#7290].
Motivation:
We tried to call `select` after we closed the channel (and so removed all the handlers from the pipeline) when we detected a non SSL record. This would cause an exception like this:
```
Caused by: java.util.NoSuchElementException: io.netty.handler.ssl.SniHandler
at io.netty.channel.DefaultChannelPipeline.getContextOrDie(DefaultChannelPipeline.java:1098)
at io.netty.channel.DefaultChannelPipeline.replace(DefaultChannelPipeline.java:506)
at io.netty.handler.ssl.SniHandler.replaceHandler(SniHandler.java:133)
at io.netty.handler.ssl.SniHandler.onLookupComplete(SniHandler.java:113)
at io.netty.handler.ssl.AbstractSniHandler.select(AbstractSniHandler.java:225)
at io.netty.handler.ssl.AbstractSniHandler.decode(AbstractSniHandler.java:218)
at io.netty.handler.codec.ByteToMessageDecoder.decodeRemovalReentryProtection(ByteToMessageDecoder.java:489)
at io.netty.handler.codec.ByteToMessageDecoder.callDecode(ByteToMessageDecoder.java:428)
... 40 more
```
Modifications:
- Ensure we rethrow the NotSslRecordException when detecting it (and closing the channel). This will also ensure we not call `select(...)`
- Not catch `Throwable` but only `Exception`
- Add test case.
Result:
Correctly handle the case of an non SSL record.
Motivation:
We used NetUtil.isIpV4StackPreferred() when loading JNI code which tries to load NetworkInterface in its static initializer. Unfortunally a lock on the NetworkInterface class init may be already hold somewhere else which may cause a loader deadlock.
Modifications:
Add a new Socket.initialize() method that will be called when init the library and pass everything needed to the JNI level so we not need to call back to java.
Result:
Fixes [#7458].
Motivation:
We only want to log for the particular case when debug logging is enabled so we not need to try to match the message if this is not the case.
Modifications:
Guard with logger.isDebugEnabled()
Result:
Less overhead when debug logging is not enabled.
Motivation:
AbstractChannel attempts to "filter" messages which are written [1]. A goal of this process is to copy from heap to direct if necessary. However implementations of this method [2][3] may translate a buffer with 0 readable bytes to EMPTY_BUFFER. This may mask a user error where an empty buffer is written but already released.
Modifications:
Replace safeRelease(...) with release(...) to ensure we propagate reference count issues.
Result:
Fixes [#7383]
Motivation:
The default enabled cipher suites of the OpenSsl engine are not set to
SslUtils#DEFAULT_CIPHER_SUITES. Instead all available cipher suites are
enabled. This should happen only as a fallback.
Modifications:
Moved the line in the static initializer in OpenSsl which adds the
SslUtils#DEFAULT_CIPHER_SUITES to the default enabled cipher suites up
before the fallback.
Result:
The default enabled cipher suites of the OpenSsl engine are set to the
available ones of the SslUtils#DEFAULT_CIPHER_SUITES.
The default enabled cipher suites of the OpenSsl engine are only set to
all available cipher suites if no one of the
SslUtils#DEFAULT_CIPHER_SUITES is supported.
Motivation:
We dont need to use the ThreadDeathWatcher if we use a FastThreadLocalThread for which we wrap the Runnable and ensure we call FastThreadLocal.removeAll() once the Runnable completes.
Modifications:
- Dont use a ThreadDeathWatcher if we are sure we will call FastThreadLocal.removeAll()
- Add unit test.
Result:
Less overhead / running theads if you only allocate / deallocate from FastThreadLocalThreads.
Motivation:
HttpObjectDecoder will throw a TooLongFrameException when either the max size for the initial line or the header size was exceeed. We have no tests for this.
Modifications:
Add test cases.
Result:
More tests.
Motivation:
Exception handling is nicer when a more specific Exception is thrown
Modification:
Add a static reference for ENOENT, and throw FNFE if it is returned
Result:
More precise exception handling
Motiviation:
The OSGi Test suite runs without access to sun.misc.Unsafe, and so is a good place to put a test to avoid regressing #6548.
Modification:
Added a test-case that failed before https://github.com/netty/netty/pull/7432.
Result:
Test for fix included.
Motivation:
OSGI and other enviroments may not allow to even load Unsafe which will lead to an NoClassDefFoundError when trying to access it. We should guard against this.
Modifications:
Catch NoClassDefFoundError when trying to load Unsafe.
Result:
Be able to use netty with a strict OSGI config.
Motivation:
When system property is empty, the default value should be used.
Modification:
- Correctly use the default value in all cases
- Add unit tests
Result:
Correct behaviour
Motivation:
Its possible that cleanup() will throw if invalid data is passed into the wrapped EmbeddedChannel. We need to ensure we still call channelInactive(...) in this case.
Modifications:
- Correctly forward Exceptions caused by cleanup()
- Ensure all content is released when cleanup() throws
- Add unit tests
Result:
Correctly handle the case when cleanup() throws.
Motivation:
4732fabb16 introduced a regression in HttpObjectEncoder which will lead to buffer leak and IllegalStateException when a LastHttpContent with trailers is written.
Modifications:
- Correctly add the buffer to the encoded list.
- Add testcases
Result:
Fixes [#7418]
Motivation:
AbstractByteBuf#readSlice relied upon the bounds checking of the slice operation in order to detect index out of bounds conditions. However the slice bounds checking operation allows for the slice to go beyond the writer index, and this is out of bounds for a read operation.
Modifications:
- AbstractByteBuf#readSlice and AbstractByteBuf#readRetainedSlice should ensure the desired amount of bytes are readable before taking a slice
Result:
No reading of undefined data in AbstractByteBuf#readSlice and AbstractByteBuf#readRetainedSlice.
Motivation:
We should not fire a SslHandshakeEvent if the channel is closed but the handshake was not started.
Modifications:
- Add a variable to SslHandler which tracks if an handshake was started yet or not and depending on this fire the event.
- Add a unit test
Result:
Fixes [#7262].
Motivation:
The behavior for SelectorFailureBehavior and SelectedListenerFailureBehavior enum values are not clear. Additional comments would clarify the expected behavior.
Modifications:
- Add comments for each value in SelectedListenerFailureBehavior and SelectorFailureBehavior which clarify the expected behavior
Result:
The behavior of SelectedListenerFailureBehavior and SelectorFailureBehavior are more clearly communicated.
Motivation:
According to RFC 7231 the server may choose to:
```
indicate a zero-length payload for the response by including a
Transfer-Encoding header field with a value of chunked and a message
body consisting of a single chunk of zero-length
```
https://tools.ietf.org/html/rfc7231#page-53
In such cases the exception below appears during decoding phase:
```
java.lang.IllegalArgumentException: invalid version format: 0
at io.netty.handler.codec.http.HttpVersion.<init>(HttpVersion.java:121)
at io.netty.handler.codec.http.HttpVersion.valueOf(HttpVersion.java:76)
at io.netty.handler.codec.http.HttpResponseDecoder.createMessage(HttpResponseDecoder.java:118)
at io.netty.handler.codec.http.HttpObjectDecoder.decode(HttpObjectDecoder.java:219)
```
Modifications:
HttpObjectDecoder.isContentAlwaysEmpty specifies content NOT empty
when 205 Reset Content response
Result:
There is no `IllegalArgumentException: invalid version format: 0`
when handling 205 Reset Content response with transfer-encoding
Motivation:
`FixedChannelPool` allows users to configure `acquireTimeoutMillis`
and expects given value to be greater or equal to zero when timeout
action is supplied. However, validation error message said that
value is expected to be greater or equal to one. Code performs
check against zero.
Modifications:
Changed error message to say that value greater or equal to
zero is expected. Added test to check that zero is an acceptable
value.
Result:
Exception with right error message is thrown.
Motivation:
At the moment use loops to run SslHandler tests with different SslProviders which is error-prone and also make it difficult to understand with which provider these failed.
Modifications:
- Move unit tests that should run with multiple SslProviders to extra class.
- Use junit Parameterized to run with different SslProvider combinations
Result:
Easier to understand which SslProvider produced test failures
Motivation:
When calling CompositeBytebuf.copy() and copy(...) we currently use Unpooled to allocate the buffer. This is not really correct and may produce more GC then needed. We should use the allocator that was used when creating the CompositeByteBuf to allocate the new buffer which may be for example the PooledByteBufAllocator.
Modifications:
- Use alloc() to allocate the new buffer.
- Add tests
- Fix tests that depend on the copy to be backed by an byte-array without checking hasArray() first.
Result:
Fixes [#7393].