Motivation:
Read-only heap ByteBuffer doesn't expose array: the existent method to perform copies to direct ByteBuf involves the creation of a (maybe pooled) additional heap ByteBuf instance and copy
Modifications:
To avoid stressing the allocator with additional (and stealth) heap ByteBuf allocations is provided a method to perform copies using the (pooled) internal NIO buffer
Result:
Copies from read-only heap ByteBuffer to direct ByteBuf won't create any intermediate ByteBuf
Motivation:
To avoid eager allocation of the destination and to perform length prefixed encoding of UTF-8 string with forward only access pattern
Modifications:
The original writeUtf8 is modified by allowing customization of the reserved bytes on the destination buffer and is introduced an exact UTF-8 length estimator.
Result:
Is now possible to perform length first encoding with UTF-8 well-formed char sequences following a forward only write access pattern on the destination buffer.
Motivation:
ByteBufUtil by default will cache DirectByteBuffer objects, and the
associated direct memory (up to 64k). In combination with the Recycler which may
cache up to 32k elements per thread may lead to a large amount of direct
memory being retained per EventLoop thread. As traffic spikes come this
may be perceived as a memory leak because the memory in the Recycler
will never be reclaimed.
Modifications:
- By default we shouldn't cache DirectByteBuffer objects.
Result:
Less direct memory consumption due to caching DirectByteBuffer objects.
Motivation:
There is some cleanup that can be done.
Modifications:
- Use intializer list expression where possible
- Remove unused imports.
Result:
Cleaner code.
Motivation:
We need the memoryAddress of a direct buffer when using our native transports. For this reason ReadOnlyUnsafeDirectByteBuf.memoryAddress() should not throw.
Modifications:
- Correctly override ReadOnlyUnsafeDirectByteBuf.memoryAddress() and hasMemoryAddress()
- Add test case
Result:
Fixes [#7672].
Motivation:
We saw some timeouts on the CI when the leak detection is enabled.
Modifications:
- Use smaller number of operations in test
- Increase timeout
Result:
CI not times out.
Motivation:
ByteBufUtil.isText(...) may produce unexpected results if called concurrently on the same ByteBuffer.
Modifications:
- Don't use internalNioBuffer where it is not safe.
- Add unit test.
Result:
ByteBufUtil.isText is thread-safe.
Motivation:
Usages of HttpResponseStatus may result in more object allocation then necessary due to not looking for cached objects and the AsciiString parsing method not being used due to CharSequence method being used instead.
Modifications:
- HttpResponseDecoder should attempt to get the HttpResponseStatus from cache instead of allocating a new object
- HttpResponseStatus#parseLine(CharSequence) should check if the type is AsciiString and redirect to the AsciiString parsing method which may not require an additional toString call
- HttpResponseStatus#parseLine(AsciiString) can be optimized and doesn't require and may not require object allocation
Result:
Less allocations when dealing with HttpResponseStatus.
Motivation:
Depending on the implementation of ByteBuf nioBuffer(...) and nioBuffers(...) may either share the content or return a ByteBuffer that contains a copy of the content.
Modifications:
Fix javadocs.
Result:
Correct docs.
Motivation:
Calling ByteBuf.toString(Charset) on the same buffer from multiple threads at the same time produces unexpected results, such as various exceptions and/or corrupted output. This is because ByteBufUtil.decodeString(...) is taking the source ByteBuffer for CharsetDecoder.decode() from ByteBuf.internalNioBuffer(int, int), which is not thread-safe.
Modification:
Call ByteBuf.nioBuffer() instead of ByteBuf.internalNioBuffer() to get the source buffer to pass to CharsetDecoder.decode().
Result:
Fixes the possible race condition.
Motivation:
We did not correctly take the position into account when wrapping a ByteBuffer via ReadOnlyUnsafeDirectByteBuf as we obtained the memory address from the original ByteBuffer and not the slice we take.
Modifications:
- Correctly use the slice to obtain memory address.
- Add test case.
Result:
Fixes [#7565].
Motivation:
There is no guarantee that FastThreadLocal.onRemoval(...) is called if the FastThreadLocal is used by "non" FastThreacLocalThreads. This can lead to all sort of problems, like for example memory leaks as direct memory is not correctly cleaned up etc.
Beside this we use ThreadDeathWatcher to check if we need to release buffers back to the pool when thread local caches are collected. In the past ThreadDeathWatcher was used which will need to "wakeup" every second to check if the registered Threads are still alive. If we can ensure FastThreadLocal.onRemoval(...) is called we do not need this anymore.
Modifications:
- Introduce ObjectCleaner and use it to ensure FastThreadLocal.onRemoval(...) is always called when a Thread is collected.
- Deprecate ThreadDeathWatcher
- Add unit tests.
Result:
Consistent way of cleanup FastThreadLocals when a Thread is collected.
Motivation:
We used subList in CompositeByteBuf to remove ranges of elements from the internal storage. Beside this we also used an foreach loop in a few cases which will crate an Iterator.
Modifications:
- Use our own sub-class of ArrayList which exposes removeRange(...). This allows to remove a range of elements without an extra allocation.
- Use an old style for loop to iterate over the elements to reduce object allocations.
Result:
Less allocations.
Automatic-Module-Name entry provides a stable JDK9 module name, when Netty is used in a modular JDK9 applications. More info: http://blog.joda.org/2017/05/java-se-9-jpms-automatic-modules.html
When Netty migrates to JDK9 in the future, the entry can be replaced by actual module-info descriptor.
Modification:
The POM-s are configured to put the correct module names to the manifest.
Result:
Fixes#7218.
Motivation:
We dont need to use the ThreadDeathWatcher if we use a FastThreadLocalThread for which we wrap the Runnable and ensure we call FastThreadLocal.removeAll() once the Runnable completes.
Modifications:
- Dont use a ThreadDeathWatcher if we are sure we will call FastThreadLocal.removeAll()
- Add unit test.
Result:
Less overhead / running theads if you only allocate / deallocate from FastThreadLocalThreads.
Motivation:
AbstractByteBuf#readSlice relied upon the bounds checking of the slice operation in order to detect index out of bounds conditions. However the slice bounds checking operation allows for the slice to go beyond the writer index, and this is out of bounds for a read operation.
Modifications:
- AbstractByteBuf#readSlice and AbstractByteBuf#readRetainedSlice should ensure the desired amount of bytes are readable before taking a slice
Result:
No reading of undefined data in AbstractByteBuf#readSlice and AbstractByteBuf#readRetainedSlice.
Motivation:
When calling CompositeBytebuf.copy() and copy(...) we currently use Unpooled to allocate the buffer. This is not really correct and may produce more GC then needed. We should use the allocator that was used when creating the CompositeByteBuf to allocate the new buffer which may be for example the PooledByteBufAllocator.
Modifications:
- Use alloc() to allocate the new buffer.
- Add tests
- Fix tests that depend on the copy to be backed by an byte-array without checking hasArray() first.
Result:
Fixes [#7393].
Motivation:
Even if it's a super micro-optimization (most JVM could optimize such
cases in runtime), in theory (and according to some perf tests) it
may help a bit. It also makes a code more clear and allows you to
access such methods in the test scope directly, without instance of
the class.
Modifications:
Add 'static' modifier for all methods, where it possible. Mostly in
test scope.
Result:
Cleaner code with proper 'static' modifiers.
Motivation:
Javadoc of the `ByteBufUtil#copy(AsciiString, int, ByteBuf, int, int)` is incorrect.
Modifications:
Fix it.
Result:
The description of the `#copy` method is not misleading.
Motivation:
In the `ByteBufOutputStream` we can use an appropriate methods of `ByteBuf`
to reduce calls of virtual methods and do not copying converting logic.
Modifications:
- Use an appropriate methods of `ByteBuf`
- Remove redundant conversions (int -> byte, int -> char).
- Use `ByteBuf#writeCharSequence` in the `writeBytes(String)'.
Result:
Less code duplication. A `writeBytes(String)` method is faster.
No unnecessary conversions. More consistent and cleaner code.
Configuring this is tough because there is split between highly shared (and accessed) objects and lightly accessed objects.
Modification:
There are a number of changes here. In relative order of importance:
API / Functionality changes:
* Max records and max sample records are gone. Only "target" records, the number of records tries to retain is exposed.
* Records are sampled based on the number of already stored records. The likelihood of recording a new sample is `2^(-n)`, where `n` is the number of currently stored elements.
* Records are stored in a concurrent stack structure rather than a list. This avoids a head and tail. Since the stack is only read once, there is no need to maintain head and tail pointers
* The properties of this imply that the very first and very last access are always recorded. When deciding to sample, the top element is replaced rather than pushed.
* Samples that happen between the first and last accesses now have a chance of being recorded. Previously only the final few were kept.
* Sampling is no longer deterministic. Previously, a deterministic access pattern meant that you could conceivably always miss some access points.
* Sampling has a linear ramp for low values and and exponentially backs off roughly equal to 2^n. This means that for 1,000,000 accesses, about 20 will actually be kept. I have an elegant proof for this which is too large to fit in this commit message.
Code changes:
* All locks are gone. Because sampling rarely needs to do a write, there is almost 0 contention. The dropped records counter is slightly contentious, but this could be removed or changed to a LongAdder. This was not done because of memory concerns.
* Stack trace exclusion is done outside of RLD. Classes can opt to remove some of their methods.
* Stack trace exclusion is faster, since it uses String.equals, often getting a pointer compare due to interning. Previously it used contains()
* Leak printing is outputted fairly differently. I tried to preserve as much of the original formatting as possible, but some things didn't make sense to keep.
Result:
More useful leak reporting.
Faster:
```
Before:
Benchmark (recordTimes) Mode Cnt Score Error Units
ResourceLeakDetectorRecordBenchmark.record 8 thrpt 20 136293.404 ± 7669.454 ops/s
ResourceLeakDetectorRecordBenchmark.record 16 thrpt 20 72805.720 ± 3710.864 ops/s
ResourceLeakDetectorRecordBenchmark.recordWithHint 8 thrpt 20 139131.215 ± 4882.751 ops/s
ResourceLeakDetectorRecordBenchmark.recordWithHint 16 thrpt 20 74146.313 ± 4999.246 ops/s
After:
Benchmark (recordTimes) Mode Cnt Score Error Units
ResourceLeakDetectorRecordBenchmark.record 8 thrpt 20 155281.969 ± 5301.399 ops/s
ResourceLeakDetectorRecordBenchmark.record 16 thrpt 20 77866.239 ± 3821.054 ops/s
ResourceLeakDetectorRecordBenchmark.recordWithHint 8 thrpt 20 153360.036 ± 8611.353 ops/s
ResourceLeakDetectorRecordBenchmark.recordWithHint 16 thrpt 20 78670.804 ± 2399.149 ops/s
```
Motivation:
Highly retained and released objects have contention on their ref
count. Currently, the ref count is updated using compareAndSet
with care to make sure the count doesn't overflow, double free, or
revive the object.
Profiling has shown that a non trivial (~1%) of CPU time on gRPC
latency benchmarks is from the ref count updating.
Modification:
Rather than pessimistically assuming the ref count will be invalid,
optimistically update it assuming it will be. If the update was
wrong, then use the slow path to revert the change and throw an
execption. Most of the time, the ref counts are correct.
This changes from using compareAndSet to getAndAdd, which emits a
different CPU instruction on x86 (CMPXCHG to XADD). Because the
CPU knows it will modifiy the memory, it can avoid contention.
On a highly contended machine, this can be about 2x faster.
There is a downside to the new approach. The ref counters can
temporarily enter invalid states if over retained or over released.
The code does handle these overflow and underflow scenarios, but it
is possible that another concurrent access may push the failure to
a different location. For example:
Time 1 Thread 1: obj.retain(INT_MAX - 1)
Time 2 Thread 1: obj.retain(2)
Time 2 Thread 2: obj.retain(1)
Previously Thread 2 would always succeed and Thread 1 would always
fail on the second access. Now, thread 2 could fail while thread 1
is rolling back its change.
====
There are a few reasons why I think this is okay:
1. Buggy code is going to have bugs. An exception _is_ going to be
thrown. This just causes the other threads to notice the state
is messed up and stop early.
2. If high retention counts are a use case, then ref count should
be a long rather than an int.
3. The critical section is greatly reduced compared to the previous
version, so the likelihood of this happening is lower
4. On error, the code always rollsback the change atomically, so
there is no possibility of corruption.
Result:
Faster refcounting
```
BEFORE:
Benchmark (delay) Mode Cnt Score Error Units
AbstractReferenceCountedByteBufBenchmark.retainRelease_contended 1 sample 2901361 804.579 ± 1.835 ns/op
AbstractReferenceCountedByteBufBenchmark.retainRelease_contended 10 sample 3038729 785.376 ± 16.471 ns/op
AbstractReferenceCountedByteBufBenchmark.retainRelease_contended 100 sample 2899401 817.392 ± 6.668 ns/op
AbstractReferenceCountedByteBufBenchmark.retainRelease_contended 1000 sample 3650566 2077.700 ± 0.600 ns/op
AbstractReferenceCountedByteBufBenchmark.retainRelease_contended 10000 sample 3005467 19949.334 ± 4.243 ns/op
AbstractReferenceCountedByteBufBenchmark.retainRelease_uncontended 1 sample 456091 48.610 ± 1.162 ns/op
AbstractReferenceCountedByteBufBenchmark.retainRelease_uncontended 10 sample 732051 62.599 ± 0.815 ns/op
AbstractReferenceCountedByteBufBenchmark.retainRelease_uncontended 100 sample 778925 228.629 ± 1.205 ns/op
AbstractReferenceCountedByteBufBenchmark.retainRelease_uncontended 1000 sample 633682 2002.987 ± 2.856 ns/op
AbstractReferenceCountedByteBufBenchmark.retainRelease_uncontended 10000 sample 506442 19735.345 ± 12.312 ns/op
AFTER:
Benchmark (delay) Mode Cnt Score Error Units
AbstractReferenceCountedByteBufBenchmark.retainRelease_contended 1 sample 3761980 383.436 ± 1.315 ns/op
AbstractReferenceCountedByteBufBenchmark.retainRelease_contended 10 sample 3667304 474.429 ± 1.101 ns/op
AbstractReferenceCountedByteBufBenchmark.retainRelease_contended 100 sample 3039374 479.267 ± 0.435 ns/op
AbstractReferenceCountedByteBufBenchmark.retainRelease_contended 1000 sample 3709210 2044.603 ± 0.989 ns/op
AbstractReferenceCountedByteBufBenchmark.retainRelease_contended 10000 sample 3011591 19904.227 ± 18.025 ns/op
AbstractReferenceCountedByteBufBenchmark.retainRelease_uncontended 1 sample 494975 52.269 ± 8.345 ns/op
AbstractReferenceCountedByteBufBenchmark.retainRelease_uncontended 10 sample 771094 62.290 ± 0.795 ns/op
AbstractReferenceCountedByteBufBenchmark.retainRelease_uncontended 100 sample 763230 235.044 ± 1.552 ns/op
AbstractReferenceCountedByteBufBenchmark.retainRelease_uncontended 1000 sample 634037 2006.578 ± 3.574 ns/op
AbstractReferenceCountedByteBufBenchmark.retainRelease_uncontended 10000 sample 506284 19742.605 ± 13.729 ns/op
```
Motivation:
Most, but not all defaults are statically exposed on
PooledByteBufAllocator. This makes it cumbersome to make a custom
allocator where most of the defaults remain the same.
Modification:
Expose useCacheForAllThreads, and Direct preferred. The latter is
needed because it is under the internal package, and public code
should probably not depend on it.
Result:
More customizeable allocators
Motivation:
The constrcutors a protected atm but the classes are public. We should make the constructors public as well to make it easier to write your own ByteBufAllocator.
Modifications:
Change constructors to be public and add some javadocs.
Result:
Easier to create own ByteBufAllocator.
Motivation:
`useCacheForAllThreads` may be false which disables memory caching
on non netty threads. Setting this argument or the system property
makes it impossible to use `PooledByteBufAllocator`.
Modifications:
Delayed the check of `freeSweepAllocationThreshold` in
`PoolThreadCache` to after it knows there will be any caches in
use. Additionally, check if the caches will have any data in them
(rather than allocating a 0-length array).
A test case is also added that fails without this change.
Results:
Fixes#7194
Motivation:
When the user want to have the direct memory explicitly managed by the GC (just as java.nio does) it is useful to be able to construct an UnpooledByteBufAllocator that allows this without the chances to see any memory leak.
Modifications:
Allow to explicitly disable the usage of reflection to construct direct ByteBufs and so be sure these will be collected by GC.
Result:
More flexible way to use the UnpooledByteBufAllocator.
Motivation:
The documentation for field updates says:
> Note that the guarantees of the {@code compareAndSet}
> method in this class are weaker than in other atomic classes.
> Because this class cannot ensure that all uses of the field
> are appropriate for purposes of atomic access, it can
> guarantee atomicity only with respect to other invocations of
> {@code compareAndSet} and {@code set} on the same updater.
This implies that volatiles shouldn't use normal assignment; the
updater should set them.
Modifications:
Use setter for field updaters that make use of compareAndSet.
Result:
Concurrency compliant code
Motivation:
In ReadOnlyByteBufferBuf.copy(...) we just allocated a ByteBuffer directly and wrapped it. This way it was not possible for us to free the direct memory that was used by the copy without the GC.
Modifications:
- Ensure we use the allocator when create the copy and so be able to release direct memory in a timely manner
- Add unit test
- Depending on if the to be copied buffer is direct or heap based we also allocate the same type on copy.
Result:
Fixes [#7103].
Motivation:
`ByteBuf` does not have the little endian variant of float/double access methods.
Modifications:
Add support for little endian floats and doubles into `ByteBuf`.
Result:
`ByteBuf` has get/read/set/writeFloatLE() and get/read/set/writeDoubleLE() methods. Fixes [#6576].
Motivation:
Missing return in ByteBufUtil#writeAscii causes endless loop
Modifications:
Add return after write finished
Result:
ByteBufUtil#writeAscii is ok
Motivation:
ByteBuf#ensureWritable(int,boolean) returns an int indicating the status of the resize operation. For buffers that are unmodifiable or cannot be resized this method shouldn't throw but just return 1.
ByteBuf#ensureWriteable(int) should throw unmodifiable buffers.
Modifications:
- ReadOnlyByteBuf should be updated as described above.
- Add a unit test to SslHandler which verifies the read only buffer can be tolerated in the aggregation algorithm.
Result:
Fixes https://github.com/netty/netty/issues/7002.
Motivation:
We need to ensure we not allow calling set/writeCharsequence on an released ByteBuf.
Modifications:
Add test-cases
Result:
Proves fix of [#6951].
Motivation:
AbstractByteBuf.setCharSequence(...) must not expand the buffer if not enough writable space is present in the buffer to be consistent with all the other set operations.
Modifications:
- Ensure we only exand the buffer on writeCharSequence(...) but not on setCharSequence(...)
- Add unit tests.
Result:
Consistent and correct behavior.
Motivation:
AbstractByteBuf.ensureWritable(...) should check if buffer was released and if so throw an IllegalReferenceCountException
Modifications:
Ensure we throw in all cases.
Result:
More consistent and correct behaviour
Motivation:
It would be easier to find where is missing release call in several retain release calls on a ByteBuf
Modifications:
Remove final modifier on SimpleLeakAwareByteBuf and SimpleLeakAwareByteBuf release function and override it to record release in AdvancedLeakAwareByteBuf and AdvancedLeakAwareCompositeByteBuf
Result:
Release will be recorded when enable detailed leak detection
Motivation:
Each call to SSL_write may introduce about ~100 bytes of overhead. The OpenSslEngine (based upon OpenSSL) is not able to do gathering writes so this means each wrap operation will incur the ~100 byte overhead. This commit attempts to increase goodput by aggregating the plaintext in chunks of <a href="https://tools.ietf.org/html/rfc5246#section-6.2">2^14</a>. If many small chunks are written this can increase goodput, decrease the amount of calls to SSL_write, and decrease overall encryption operations.
Modifications:
- Introduce SslHandlerCoalescingBufferQueue in SslHandler which will aggregate up to 2^14 chunks of plaintext by default
- Introduce SslHandler#setWrapDataSize to control how much data should be aggregated for each write. Aggregation can be disabled by setting this value to <= 0.
Result:
Better goodput when using SslHandler and the OpenSslEngine.
Motivation:
1. Some encoders used a `ByteBuf#writeBytes` to write short constant byte array (2-3 bytes). This can be replaced with more faster `ByteBuf#writeShort` or `ByteBuf#writeMedium` which do not access the memory.
2. Two chained calls of the `ByteBuf#setByte` with constants can be replaced with one `ByteBuf#setShort` to reduce index checks.
3. The signature of method `HttpHeadersEncoder#encoderHeader` has an unnecessary `throws`.
Modifications:
1. Use `ByteBuf#writeShort` or `ByteBuf#writeMedium` instead of `ByteBuf#writeBytes` for the constants.
2. Use `ByteBuf#setShort` instead of chained call of the `ByteBuf#setByte` with constants.
3. Remove an unnecessary `throws` from `HttpHeadersEncoder#encoderHeader`.
Result:
A bit faster writes constants into buffers.
Motivation:
We should also use realloc when shrink the buffer to eliminate extra allocations / memory copies when possible.
Modifications:
Use realloc for expanding and shrinking when possible.
Result:
Less memory copies and allocations
Motivation:
Methods `ByteBufUtil#writeUtf8` and `ByteBufUtil#writeAscii` contains a check `ByteBuf#ensureWritable` before the calling `ByteBuf#writeBytes`. But the `ByteBuf#writeBytes` also do a such check inside.
Modifications:
Make checks more targeted.
Result:
Less redundant method calls.
Motivation:
1. `ByteBuf` contains methods to writing `CharSequence` which optimized for UTF-8 and ASCII encodings. We can also apply optimization for ISO-8859-1.
2. In many places appropriate methods are not used.
Modifications:
1. Apply optimization for ISO-8859-1 encoding in the `ByteBuf#setCharSequence` realizations.
2. Apply appropriate methods for writing `CharSequences` into buffers.
Result:
Reduce overhead from string-to-bytes conversion.
Motivation:
PR #6811 introduced a public utility methods to decode hex dump and its parts, but they are not visible from netty-common.
Modifications:
1. Move the `decodeHexByte`, `decodeHexDump` and `decodeHexNibble` methods into `StringUtils`.
2. Apply these methods where applicable.
3. Remove similar methods from other locations (e.g. `HpackHex` test class).
Result:
Less code duplication.
Motivation:
We should allow to access the memoryAddress of the wrapped ByteBuf when using ReadOnlyByteBuf for peformance reasons. If a user act on a memoryAddress its his responsible anyway to do nothing "stupid".
Modifications:
Delegate to wrapped ByteBuf.
Result:
Less performance overhead for various operations and also when writing to a native transport (which needs the memoryAddress).
Motivations:
1. There are duplicated implementations of decoding hex strings. #6797
2. ByteBufUtil.HexUtil.decodeHexDump does not handle substring start
index properly and does not decode hex byte rigorously.
Modifications:
1. Function decodeHexByte is moved from QueryStringDecoder into ByteBufUtil.
2. ByteBufUtil.HexUtil.decodeHexDump is changed to use decodeHexByte.
3. Tests are Updated accordingly.
Result:
Fixed#6797 and made hex decoding functions more robust.
Motivation:
ByteBufUtil provides a hexDump method. For debugging purposes it is often useful to decode that hex dump to get the original content, but no such method exists.
Modifications:
- Add ByteBufUtil#decodeHexDump
Result:
ByteBufUtil#decodeHexDump is available to make debugging easier.
Motivation:
The javadocs for ByteBuf#ensureWritable(int, boolean) indicate that it should not throw, and instead the return code should indicate the result of the operation. Due to a bug in AbstractByteBuf it is possible for a resize to be attempted on a buffer that may exceed maxCapacity() and therefore throw.
Modifications:
- If there is not enough space in the buffer, and force is false, then a resize should not be attempted
Result:
AbstractByteBuf#ensureWritable(int, boolean) enforces the javadoc constraints and does not throw.
Motivation:
We not correctly released all buffers in the UnpooledTest and so showed "bad" way of handling buffers to people that inspect our code to understand when a buffer needs to be released.
Modifications:
Explicit release all buffers.
Result:
Cleaner and more correct code.
Motivation:
In cases when an application is running in a container or is otherwise
constrained to the number of processors that it is using, the JVM
invocation Runtime#availableProcessors will not return the constrained
value but rather the number of processors available to the virtual
machine. Netty uses this number in sizing various resources.
Additionally, some applications will constrain the number of threads
that they are using independenly of the number of processors available
on the system. Thus, applications should have a way to globally
configure the number of processors.
Modifications:
Rather than invoking Runtime#availableProcessors, Netty should rely on a
method that enables configuration when the JVM is started or by the
application. This commit exposes a new class NettyRuntime for enabling
such configuraiton. This value can only be set once. Its default value
is Runtime#availableProcessors so that there is no visible change to
existing applications, but enables configuring either a system property
or configuring during application startup (e.g., based on settings used
to configure the application).
Additionally, we introduce the usage of forbidden-apis to prevent future
uses of Runtime#availableProcessors from creeping. Future work should
enable the bundled signatures and clean up uses of deprecated and
other forbidden methods.
Result:
Netty can be configured to not use the underlying number of processors,
but rather the constrained number of processors.
Motivation:
Unsafe.invokeCleaner(...) checks if the passed in ByteBuffer is a slice or duplicate and if so throws an IllegalArgumentException on Java9. We need to ensure we never try to free a ByteBuffer that was provided by the user directly as we not know if its a slice / duplicate or not.
Modifications:
Never try to free a ByteBuffer that was passed into UnpooledUnsafeDirectByteBuf constructor by an user (via Unpooled.wrappedBuffer(....)).
Result:
Build passes again on Java9
Motivation:
Java9 added a new method to Unsafe which allows to allocate a byte[] without memset it. This can have a massive impact in allocation times when the byte[] is big. This change allows to enable this when using Java9 with the io.netty.tryAllocateUninitializedArray property when running Java9+. Please note that you will need to open up the jdk.internal.misc package via '--add-opens java.base/jdk.internal.misc=ALL-UNNAMED' as well.
Modifications:
Allow to allocate byte[] without memset on Java9+
Result:
Better performance when allocate big heap buffers and using java9.
Motivation:
UnreleasableByteBuf operations are designed to not modify the reference count of the underlying buffer. The Retained[Duplicate|Slice] operations violate this assumption and can cause the underlying buffer's reference count to be increased, but never allow for it to be decreased. This may lead to memory leaks.
Modifications:
- UnreleasableByteBuf's Retained[Duplicate|Slice] should leave the reference count of the parent buffer unchanged after the operation completes.
Result:
No more memory leaks due to usage of the Retained[Duplicate|Slice] on an UnreleasableByteBuf object.
Motiviation:
UnsafeByteBufUtil has some bugs related to using an incorrect index, and also omitting the array paramter when dealing with byte[] objects. There is also some simplification possible with respect to type casting, and minor formatting consistentcy issues.
Modifications:
- Ensure indexing is correct when dealing with native memory
- Fix the native access and endianness for the medium/unsigned medium methods
- Ensure array is used when dealing with heap memory
- Remove unecessary casts when using long
- Fix formating and alignment
Result:
UnsafeByteBufUtil is more correct and won't access direct memory when heap arrays are used.
Motivation:
The contract of `ByteBuf.writeBytes(ByteBuf src)` is such that it will
throw an `IndexOutOfBoundsException if `src.readableBytes()` is greater than
`this.writableBytes()`. The EmptyByteBuf class will throw the exception,
even if the source buffer has zero readable bytes, in violation of the
contract.
Modifications:
Use the helper method `checkLength(..)` to check the length and throw
the exception, if appropriate.
Result:
Conformance with the stated behavior of ByteBuf.
Motivation:
PR [#6460] added a way to access the used memory of an allocator. The used naming was not very good and how things were exposed are not consistent.
Modifications:
- Add a new ByteBufAllocatorMetric and ByteBufAllocatorMetricProvider interface
- Let the ByteBufAllocator implementations implement ByteBufAllocatorMetricProvider
- Move exposed stats / metric from PooledByteBufAllocator to PooledByteBufAllocatorMetric and mark old methods as `@Deprecated`.
Result:
More consistent way to expose metric / stats for ByteBufAllocator
Motivation:
There are numerous usages of internalNioBuffer which hard code 0 for the index when the intention was to use the readerIndex().
Modifications:
- Remove hard coded 0 for the index and use readerIndex()
Result:
We are less susceptible to using the wrong index, and don't make assumptions about the ByteBufAllocator.
Motivation:
Often its useful for the user to be able to get some stats about the memory allocated via an allocator.
Modifications:
- Allow to obtain the used heap and direct memory for an allocator
- Add test case
Result:
Fixes [#6341]
Motivation:
As we may access the metrics exposed of PooledByteBufAllocator from another thread then the allocations happen we need to ensure we synchronize on the PoolArena to ensure correct visibility.
Modifications:
Synchronize on the PoolArena to ensure correct visibility.
Result:
Fix multi-thread issues on the metrics
Motivation:
Commit 8dda984afe introduced a regression which lead to the situation that the allocator is not set when PooledByteBuf.initUnpooled(...) is called. Thus it was possible that PooledByteBuf.alloc() returns null or the wrong allocator if multiple PooledByteBufAllocator are used in an application.
Modifications:
- Correctly set the allocator
- Add test-case
Result:
Fixes [#6436].
Motivation:
We have our own ThreadLocalRandom implementation to support older JDKs . That said we should prefer the JDK provided when running on JDK >= 7
Modification:
Using ThreadLocalRandom implementation of the JDK when possible.
Result:
Make use of JDK implementations when possible.
Motivation:
Java9 does not allow changing access level via reflection by default. This lead to the situation that netty disabled Unsafe completely as ByteBuffer.address could not be read.
Modification:
Use Unsafe to read the address field as this works on all Java versions.
Result:
Again be able to use Unsafe optimisations when using Netty with Java9
Motivation:
When sun.misc.Unsafe is present we want to use *Unsafe*ByteBuf implementations. We missed to do so in PooledByteBufAllocator when the heapArena is null.
Modifications:
- Correctly use UnpooledUnsafeHeapByteBuf
- Add unit tests
Result:
Use most optimal ByteBuf implementation.
Motivation:
We can eliminate unnessary wrapping when call ByteBuf.asReadOnly() in some cases to reduce indirection.
Modifications:
- Check if asReadOnly() needs to create a new instance or not
- Add test cases
Result:
Less object creation / wrapping.
Motivation:
We need to ensure we pass all tests when sun.misc.Unsafe is not present.
Modifications:
- Make *ByteBufAllocatorTest work whenever sun.misc.Unsafe is present or not
- Let Lz4FrameEncoderTest not depend on AbstractByteBufAllocator implementation details which take into account if sun.misc.Unsafe is present or not
Result:
Tests pass even without sun.misc.Unsafe.
Motivation:
We should only try to calculate the direct memory offset when sun.misc.Unsafe is present as otherwise it will fail with an NPE as PlatformDependent.directBufferAddress(...) will throw it.
This problem was introduced by 66b9be3a46.
Modifications:
Use offset of 0 if no sun.misc.Unsafe is present.
Result:
PooledByteBufAllocator also works again when no sun.misc.Unsafe is present.
Motivation:
ReadOnlyByteBufTest contains two tests which are missing the `@Test` annotation and so will never run.
Modifications:
Add missing annotation.
Result:
Tests run as expected.
Motivation:
We used various mocking frameworks. We should only use one...
Modifications:
Make usage of mocking framework consistent by only using Mockito.
Result:
Less dependencies and more consistent mocking usage.
Motivation:
64-byte alignment is recommended by the Intel performance guide (https://software.intel.com/en-us/articles/practical-intel-avx-optimization-on-2nd-generation-intel-core-processors) for data-structures over 64 bytes.
Requiring padding to a multiple of 64 bytes allows for using SIMD instructions consistently in loops without additional conditional checks. This should allow for simpler and more efficient code.
Modification:
At the moment cache alignment must be setup manually. But probably it might be taken from the system. The original code was introduced by @normanmaurer https://github.com/netty/netty/pull/4726/files
Result:
Buffer alignment works better than miss-align cache.
Motivation:
We not had tests for ByteBufAllocator implementations in general.
Modifications:
Added ByteBufAllocatorTest, AbstractByteBufAllocatorTest and UnpooledByteBufAllocatorTest
Result:
More tests for allocator implementations.
Motivation:
PooledByteBuf.capacity(...) miss to enforce maxCapacity() and so its possible to increase the capacity of the buffer even if it will be bigger then maxCapacity().
Modifications:
- Correctly enforce maxCapacity()
- Add unit tests for capacity(...) calls.
Result:
Correctly enforce maxCapacity().
Motivation:
When An HTTP server is listening in plaintext mode, it doesn't have
a chance to negotiate "h2" in the tls handshake. HTTP 1 clients
that are not expecting an HTTP2 server will accidentally a request
that isn't an upgrade, which the HTTP/2 decoder will not
understand. The decoder treats the bytes as hex and adds them to
the error message.
These error messages are hard to understand by humans, and result
in extra, manual work to decode.
Modification:
If the first bytes of the request are not the preface, the decoder
will now see if they are an HTTP/1 request first. If so, the error
message will include the method and path of the original request in
the error message.
In case the path is long, the decoder will check up to the first
1024 bytes to see if it matches. This could be a DoS vector if
tons of bad requests or other garbage come in. A future optimization
would be to treat the first few bytes as an AsciiString and not do
any Charset decoding. ByteBuf.toCharSequence alludes to such an
optimization.
The code has been left simple for the time being.
Result:
Faster identification of errant HTTP requests.
Motivation:
Disable ThreadLocal Cache, then allocate Pooled ByteBuf and release all these buffers, PoolArena's tiny/small/normal allocation count is incorrect.
Modifications:
- Calculate PoolArena's tiny/small/normal allocation one time
- Add testAllocationCounter TestCase
Result:
Fixes#6282 .
Motivation:
In PooledByteBuf we missed to null out the chunk and tmpNioBuf fields before recycle it to the Recycler. This could lead to keep objects longer alive then necessary which may hold a lot of memory.
Modifications:
Null out tmpNioBuf and chunk before recycle.
Result:
Possible to earlier GC objects.
Motivation:
ByteBufUtil.compare uses long arithmetic but doesn't check for underflow on when converting from long to int to satisfy the Comparable interface. This will result in incorrect comparisons and violate the Comparable interface contract.
Modifications:
- ByteBufUtil.compare should protect against int underflow
Result:
Fixes https://github.com/netty/netty/issues/6169
Motivation:
In later Java8 versions our Atomic*FieldUpdater are slower then the JDK implementations so we should not use ours anymore. Even worse the JDK implementations provide for example an optimized version of addAndGet(...) using intrinsics which makes it a lot faster for this use-case.
Modifications:
- Remove methods that return our own Atomic*FieldUpdaters.
- Use the JDK implementations everywhere.
Result:
Faster code.
Motivation:
We should assert that the leak aware buffers correctly close the ResourceLeakTracker in the unit tests.
Modifications:
- Keep track of NoopResourceLeakTrackers and check if these were closed once the test completes
- Fix bugs in tests so the buffers are all released.
Result:
Better tests for leak aware buffers
Motivation:
If caches are disabled it does not make sense to schedule a task that will free up memory consumed by the caches.
Modifications:
Do not schedule if caches are disabled.
Result:
Less overhead.
Motivation:
We need to ensure the tracked object can not be GC'ed before ResourceLeak.close() is called as otherwise we may get false-positives reported by the ResourceLeakDetector. This can happen as the JIT / GC may be able to figure out that we do not need the tracked object anymore and so already enqueue it for collection before we actually get a chance to close the enclosing ResourceLeak.
Modifications:
- Add ResourceLeakTracker and deprecate the old ResourceLeak
- Fix some javadocs to correctly release buffers.
- Add a unit test for ResourceLeakDetector that shows that ResourceLeakTracker has not the problems.
Result:
No more false-positives reported by ResourceLeakDetector when ResourceLeakDetector.track(...) is used.
Motivation:
PooledByteBufAllocatorTest uses an ArrayQueue but access it from multiple threads (not concurrently but still from different threads). This may leak to memory visibility issues.
Modifications:
- Use a concurrent queue
- Some cleanup
Result:
Non racy test code.
Motivation:
If a user allocates a lot from outside the EventLoop we may end up creating a lot of caches in the PooledByteBufAllocator. This may be wasteful and so it may be useful for an other to configure that caches should only be used from within EventLoops.
Modifications:
Add new constructor which allows to configure the caching behaviour.
Result:
More flexible configuration of PooledByteBufAllocator possible
Motivation:
We support using Netty without sun.misc.Unsafe, so we should also support building it without it. This way we can also run all tests without sun.misc.Unsafe and so see if it works as expected.
Modifications:
Correctly skip tests that depend on sun.misc.Unsafe if its not present or -Dio.netty.noUnsafe=true is used.
Result:
Be able to build netty without sun.misc.Unsafe
Motivation:
SwappedByteBuf.unwrap() not returned the wrapped buffer but the buffer that was wrapped by the original buffer. This is not correct.
Modifications:
Correctly return wrapped buffer and fix test.
Result:
SwappedByteBuf.unwrap() works as expected.
Motivation:
We had a few tests PooledByteBufAllocatorTests which used parkNanos(...) to give a resource enough time to get destroyed. This is race and may not be good enough.
Modifications:
Ensure the ThreadCache is really destroyed.
Result:
No more racy tests that depend on ThreadCaches.
Motivation:
IntelliJ issues several warnings.
Modifications:
* `ClientCookieDecoder` and `ServerCookieDecoder`:
* `nameEnd`, `valueBegin` and `valueEnd` don't need to be initialized
* `keyValLoop` loop doesn't been to be labelled, as it's the most inner one (same thing for labelled breaks)
* Remove `if (i != headerLen)` as condition is always true
* `ClientCookieEncoder` javadoc still mention old logic
* `DefaultCookie`, `ServerCookieEncoder` and `DefaultHttpHeaders` use ternary ops that can be turned into simple boolean ones
* `DefaultHeaders` uses a for(int) loop over an array. It can be turned into a foreach one as javac doesn't allocate an iterator to iterate over arrays
* `DefaultHttp2Headers` and `AbstractByteBuf` `equal` can be turned into a single boolean statement
Result:
Cleaner code
Motivation:
4bba7526e2 introduced changes which made pooled and unpooled derived buffers inconsistent in a few ways:
- Pooled derived buffers always generated a duplicate buffer when duplicate() was called and always generated a sliced buffer when slice() was called. Unpooled derived buffers some times generated a sliced buffer when duplicate() was called.
- The indexes that were set for duplicate buffers generated from slices were not always consistent.
There were also some various bugs in the derived pooled buffer implementation.
Modifications:
- Make pooled/unpooled consistently generate duplicate buffers when duplicate() is called and sliced buffers when slice() is called.
- Fix bugs in the derived pooled buffer
Result:
More consistent behavior from the derived pooled/unpooled buffers.
Motiviation:
We used ReferenceCountUtil.releaseLater(...) in our tests which simplifies a bit the releasing of ReferenceCounted objects. The problem with this is that while it simplifies stuff it increase memory usage a lot as memory may not be freed up in a timely manner.
Modifications:
- Deprecate releaseLater(...)
- Remove usage of releaseLater(...) in tests.
Result:
Less memory needed to build netty while running the tests.
Motivation:
Currently the ByteBuf created as a result of retained[Slice|Duplicate] maintains its own reference count, and when this reference count is depleated it will release the ByteBuf returned from unwrap(). The unwrap() buffer is designed to be the 'root parent' and will skip all intermediate layers of buffers. If the intermediate layers of buffers contain a retained[Slice|Duplicate] then these reference counts will be ignored during deallocation. This may lead to deallocating the 'root parent' before all derived pooled buffers are actually released. This same issue holds if a retained[Slice|Duplicate] is in the heirachy and a 'regular' slice() or duplicate() buffer is created.
Modifications:
- AbstractPooledDerivedByteBuf must maintain a reference to the direct parent (the buffer which retained[Slice|Duplicate] was called on) and release on this buffer instead of the 'root parent' returned by unwrap()
- slice() and duplicate() buffers created from AbstractPooledDerivedByteBuf must also delegate reference count operations to their immediate parent (or first ancestor which maintains an independent reference count).
Result:
Fixes https://github.com/netty/netty/issues/5999
Motivation:
Netty provides a adaptor from ByteBuf to Java's InputStream interface. The JDK Stream interfaces have an explicit lifetime because they implement the Closable interface. This lifetime may be differnt than the ByteBuf which is wrapped, and controlled by the interface which accepts the JDK Stream. However Netty's ByteBufInputStream currently does not take reference count ownership of the underlying ByteBuf. There may be no way for existing classes which only accept the InputStream interface to communicate when they are done with the stream, other than calling close(). This means that when the stream is closed it may be appropriate to release the underlying ByteBuf, as the ownership of the underlying ByteBuf resource may be transferred to the Java Stream.
Motivation:
- ByteBufInputStream.close() supports taking reference count ownership of the underyling ByteBuf
Result:
ByteBufInputStream can assume reference count ownership so the underlying ByteBuf can be cleaned up when the stream is closed.
Motivation:
In some ByteBuf implementations we not correctly implement getBytes(index, ByteBuffer).
Modifications:
Correct code to do what is defined in the javadocs and adding test.
Result:
Implementation works as described.
Motivation:
the build doesnt seem to enforce this, so they piled up
Modifications:
removed unused import lines
Result:
less unused imports
Signed-off-by: radai-rosenblatt <radai.rosenblatt@gmail.com>
Motivation:
We need to ensure we release all direct memory once the DirectPoolArena is collected. Otherwise we may never reclaim the memory and so leak memory.
Modifications:
Ensure we destroy all PoolChunk memory when DirectPoolArena is collected.
Result:
Free up unreleased memory when DirectPoolArena is collected.
Motivation:
We can share the code in retain() and retain(...) and also in release() and release(...).
Modifications:
Share code.
Result:
Less duplicated code.
Motivation:
We introduced a regression in 1abdbe6f67 which let the iteration start from the wrong index.
Modifications:
Fix start index and add tests.
Result:
Fix regression.
Motivation:
Result of ByteBufUtil.compare(ByteBuf a, ByteBuf b) is dependent on ByteOrder of supplied ByteBufs which should not be the case (as stated in the javadocs).
Modifications:
Ensure we get a consistent behavior when calling ByteBufUtil.compare(ByteBuf a, ByteBuf b) and not depend on ByteOrder.
Result:
ByteBufUtil.compare(ByteBuf a, ByteBuf b) and so AbstractByteBuf.compare(...) works correctly as stated in the javadocs.
Motivation:
Sometimes it is useful to be able to wrap an existing memory address (a.k.a pointer) and create a ByteBuf from it. This way its easier to interopt with other libraries.
Modifications:
Add a new Unpooled.wrappedBuffer(....) method that takes a memory address.
Result:
Be able to wrap an existing memory address into a ByteBuf.
Motivation:
The default limit for the maximum amount of bytes that a method will be inlined is 35 bytes. AbstractByteBuf#forEach and AbstractByteBuf#forEachDesc comprise of method calls which are more than this maximum default threshold and may prevent or delay inlining for occuring. The byte code for these methods can be reduced to allow for easier inlining. Here are the current byte code sizes:
AbstractByteBuf::forEachByte (24 bytes)
AbstractByteBuf::forEachByte(int,int,..) (14 bytes)
AbstractByteBuf::forEachByteAsc0 (71 bytes)
AbstractByteBuf::forEachByteDesc (24 bytes)
AbstractByteBuf::forEachByteDesc(int,int,.) (24 bytes)
AbstractByteBuf::forEachByteDesc0 (69 bytes)
Modifications:
- Reduce the code for each method in the AbstractByteBuf#forEach and AbstractByteBuf#forEachDesc call stack
Result:
AbstractByteBuf::forEachByte (25 bytes)
AbstractByteBuf::forEachByte(int,int,..) (25 bytes)
AbstractByteBuf::forEachByteAsc0 (29 bytes)
AbstractByteBuf::forEachByteDesc (25 bytes)
AbstractByteBuf::forEachByteDesc(int,int,..) (27 bytes)
AbstractByteBuf::forEachByteDesc0 (29 bytes)
Motivation:
We used incorrect assumeTrue(...) checks.
Modifications:
Fix check.
Result:
Be able to run tests also if java.nio.DirectByteBuffer.<init>(long, int) could not be accessed.
Motivation:
We not need to do an extra conditional check in retain(...) as we can just check for overflow after we did the increment.
Modifications:
- Remove extra conditional check
- Add test code.
Result:
One conditional check less.
Motivation:
AbstractReferenceCountedByteBuf as independent conditional statements to check the bounds of the retain IllegalReferenceCountException condition. One of the exceptions also uses the incorrect increment. The same fix was done for AbstractReferenceCounted as 01523e7835.
Modifications:
- Combined independent conditional checks into 1 where possible
- Correct IllegalReferenceCountException with incorrect increment
- Remove the subtract to check for overflow and re-use the addition and check for overflow to remove 1 arithmetic operation (see http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.18.2)
Result:
AbstractReferenceCountedByteBuf has less independent branch statements and more correct IllegalReferenceCountException. Compilation size of AbstractReferenceCountedByteBuf.retain() is reduced.
Motivation:
Some usages of findNextPositivePowerOfTwo assume that bounds checking is taken care of by this method. However bounds checking is not taken care of by findNextPositivePowerOfTwo and instead assert statements are used to imply the caller has checked the bounds. This can lead to unexpected non power of 2 return values if the caller is not careful and thus invalidate any logic which depends upon a power of 2.
Modifications:
- Add a safeFindNextPositivePowerOfTwo method which will do runtime bounds checks and always return a power of 2
Result:
Fixes https://github.com/netty/netty/issues/5601
Motivation:
When Unpooled.wrappedBuffer(...) is called with an array of ByteBuf with length >= 2 and the first ByteBuf is not readable it will result in double releasing of these empty buffers when release() is called on the returned buffer.
Modifications:
- Ensure we only wrap readable buffers.
- Add unit test
Result:
No double release of buffers.
Motivation:
retainSlice() currently does not unwrap the ByteBuf when creating the ByteBuf wrapper. This effectivley forms a linked list of ByteBuf when it is only necessary to maintain a reference to the unwrapped ByteBuf.
Modifications:
- retainSlice() and retainDuplicate() variants should only maintain a reference to the unwrapped ByteBuf
- create new unit tests which generally verify the retainSlice() behavior
- Remove unecessary generic arguments from AbstractPooledDerivedByteBuf
- Remove unecessary int length member variable from the unpooled sliced ByteBuf implementation
- Rename the unpooled sliced/derived ByteBuf to include Unpooled in their name to be more consistent with the Pooled variants
Result:
Fixes https://github.com/netty/netty/issues/5582