Motivation:
If we don't need the scheduled future, then it will be one less complication when we change Netty Future to no longer extend JDK Future.
It would also result in fewer elements in our API.
Modification:
There was only one real use of ScheduledFuture in our code, in Cache.
This has been changed to wrap an ordinary future with a deadline for implementing the Delayed interface.
All other places were effectively overspecifying by relying on ScheduledFuture.
A few places were also specifying JDK Futures - these have been changed to specify Netty Futures.
Result:
Reduced dependency on the ScheduledFuture interfaces.
Motivation:
The expression "not is success" can mean that either the future failed, or it has not yet completed.
However, many places where such an expression is used is expecting the future to have completed.
Specifically, they are expecting to be able to call `cause()` on the future.
It is both more correct, and semantically clearer, to call `isFailed()` instead of `!isSuccess()`.
Modification:
Change all places that used `!isSuccess()` to mean that the future had failed, to use `isFailed()`.
A few places are relying on `isSuccess()` returning `false` for _incomplete_ futures, and these places have been left unchanged.
Result:
Clearer code, with potentially fewer latent bugs.
Motivation:
We should just add `executor()` to the `ChannelOutboundInvoker` interface and override this method in `Channel` to return `EventLoop`.
Modifications:
- Add `executor()` method to `ChannelOutboundInvoker`
- Let `Channel` override this method and return `EventLoop`.
- Adjust all usages of `eventLoop()`
- Add some default implementations
Result:
API cleanup
Motivation:
The generics for the existing futures, promises, and listeners are too complicated.
This complication comes from the existence of `ChannelPromise` and `ChannelFuture`, which forces listeners to care about the particular _type_ of future being listened on.
Modification:
* Add a `FutureContextListener` which can take a context object as an additional argument. This allows our listeners to have the channel piped through to them, so they don't need to rely on the `ChannelFuture.channel()` method.
* Make the `FutureListener`, along with the `FutureContextListener` sibling, the default listener API, retiring the `GenericFutureListener` since we no longer need to abstract over the type of the future.
* Change all uses of `ChannelPromise` to `Promise<Void>`.
* Change all uses of `ChannelFuture` to `Future<Void>`.
* Change all uses of `GenericFutureListener` to either `FutureListener` or `FutureContextListener` as needed.
* Remove `ChannelFutureListener` and `GenericFutureListener`.
* Introduce a `ChannelFutureListeners` enum to house the constants that previously lived in `ChannelFutureListener`. These constants now implement `FutureContextListener` and take the `Channel` as a context.
* Remove `ChannelPromise` and `ChannelFuture` — all usages now rely on the plain `Future` and `Promise` APIs.
* Add static factory methods to `DefaultPromise` that allow us to create promises that are initialised as successful or failed.
* Remove `CompleteFuture`, `SucceededFuture`, `FailedFuture`, `CompleteChannelFuture`, `SucceededChannelFuture`, and `FailedChannelFuture`.
* Remove `ChannelPromiseNotifier`.
Result:
Cleaner generics and more straight forward code.
Motivation:
This fixes a bug that would result in an `io.netty.channel.unix.Errors$NativeIoException: connectx(..) failed: Address family not supported by protocol family` error.
This happens when the connecting socket is configured to use IPv6 but the address being connected to is IPv4.
This can occur because, for instance, Netty and `InetAddress.getLoopbackAddress()` have different preferences for IPv6 vs. IPv4.
Modification:
Pass the correct ipv6 or ipv4 flags to connectx, depending on whether the socket was created for AF_INET or AF_INET6, rather than relying on the IP version of the destination address.
Result:
No more issue with TCP FastOpen on MacOS when using addresses of the "wrong" IP version.
Motivation:
We should use StandardSocketOptions#IP_MULTICAST_IF as default source when joing multicast groups and only try to use the localAddress if this returns null.
Modifications:
First check if StandardSocketOptions#IP_MULTICAST_IF was set and if so use the network interface when joining mulicast groups
Result:
Fixes https://github.com/netty/netty/issues/11541
Motivation:
The MacOS-specific `connectx(2)` system call make it possible to establish client-side connections with TCP FastOpen.
Modification:
Add support for TCP FastOpen to the KQueue transport, and add the `connectx(2)` system call to `BsdSocket`.
Result:
It's now possible to use TCP FastOpen when initiating connections on MacOS.
Motivation:
There are lots of redundant variable declarations which should be inlined to make good look better.
Modification:
Made variables inlined.
Result:
Less redundant variable and more readable code.
Motivation:
Let's have fewer warnings about broken, missing, or abuse of javadoc comments.
Modification:
Added descriptions to throws clauses that were missing them.
Remove link clauses from throws clauses - these are implied.
Turned some javadoc comments into block comments because they were not applied to APIs.
Use code clauses instead of code tags.
Result:
Fewer javadoc crimes.
Motivation:
There are lots of imports which are unused. We should get rid of them to make the code look better,
Modification:
Removed unused imports.
Result:
No unused imports.
Bootstrap methods now return Future<Channel> instead of ChannelFuture
Motivation:
In #8516 it was proposed to at some point remove the specialised ChannelFuture and ChannelPromise.
Or at least make them not extend Future and Promise, respectively.
One pain point encountered in this discussion is the need to get access to the channel object after it has been initialised, but without waiting for the channel registration to propagate through the pipeline.
Modification:
Add a Bootstrap.createUnregistered method, which will return a Channel directly.
All other Bootstrap methods that previously returned ChannelFuture now return Future<Channel>
Result:
It's now possible to obtain an initialised but unregistered channel from a bootstrap, without blocking.
And the other bootstrap methods now only release their channels through the result of their futures, preventing racy access to the channels.
Motivation:
There are use cases when Unix domain datagram sockets are needed for communication.
This PR adds such support for Epoll/KQueue.
Modification:
- Expose Channel, Config and Packet interfaces/classes for Unix domain datagram sockets.
All interfaces/classes are in `transport-native-unix-common` module in order to be available
for KQueue and Epoll implementations
- Add JNI code for Unix domain datagram sockets
- Refactor `DatagramUnicastTest` so that it can be used for testing also Unix domain datagram sockets
- Add Unix domain datagram sockets implementation for KQueue transport
- Add Unix domain datagram sockets implementation for Epoll transport
Result:
Fixes#6737
Motivation:
Sometime in the past we introduced the concept of Void*Promise. As it turned out this was not a good idea at all as basically each handler in the pipeline need to be very careful to correctly handle this. We should better just remove this "optimization".
Modifications:
- Remove Void*Promise and all the related APIs
- Remove tests which were related to Void*Promise
Result:
Less error-prone API
Motivation:
JUnit 5 is more expressive, extensible, and composable in many ways, and it's better able to run tests in parallel.
Modifications:
Use JUnit5 in tests
Result:
Related to https://github.com/netty/netty/issues/10757
Motivation:
We used assumeTrue(...) in some places before to detect if we could load the native library but this could lead to the sitation that we not notice if we break native loading.
Modifications:
Always fail if we cant load the native library
Result:
Ensure we not cause any regression in the native loading code in the future
Motivation:
`PlatformDependent#normalizedOs()` already caches normalized variant of
the value of `os.name` system property. Instead of inconsistently
normalizing it in every case, use the utility method.
Modifications:
- `PlatformDependent`: `isWindows0()` and `isOsx0()` use `NORMALIZED_OS`;
- `PlatformDependent#normalizeOs(String)` define `darwin` as `osx`;
- `OpenSsl#loadTcNative()` does not require `equalsIgnoreCase` bcz `os`
is already normalized;
- Epoll and KQueue: `Native#loadNativeLibrary()` use `normalizedOs()`;
- Use consistent `Locale.US` for lower case conversion of `os.name`;
- `MacOSDnsServerAddressStreamProvider#loadNativeLibrary()` uses
`PlatformDependent.isOsx()`;
Result:
Consistent approach for `os.name` parsing.
Motivation:
It turns out it is quite easy to cause a classloader deadlock in more recent java updates if you cause classloading while you are in native code. Because of this we should just workaround this issue by pre-load all the classes that needs to be accessed in the OnLoad function.
Modifications:
- Preload all classes that would otherwise be loaded by native OnLoad functions.
Result:
Workaround for https://github.com/netty/netty/issues/11209 and https://bugs.openjdk.java.net/browse/JDK-8266310
Motivation:
This is a regression caused by #11086
Modifications:
AbstractKQueueChannel#writeFilter should be invoked with `!in.isEmpty()`
- false - all messages are written
- true - there are still messages to be written
Result:
AbstractKQueueChannel#writeFilter is invoked with the correct boolean depending on the ChannelOutboundBuffer state
netty-jni-util 0.0.2.Final is incompatible with static linking. Before
the netty-jni-util dependency was introduced netty-tcnative supported
static linking via NETTY_BUILD_STATIC. netty-jni-util 0.0.3.Final adds
static linking compatibility.
Modifications:
Bump netty-jni-util to version 0.0.3.Final and update to its new API
which requires the caller to manage packagePrefix.
Result:
Using latest version of netty-jni-util and restored static linking
compatibility.
... number of bytes when using DatagramChannels
Motivation:
In our FixedRecvByteBufAllocator we dont continue to read if the number of bytes is less then what was configured. This is correct when using it for TCP but not when using it for UDP. When using UDP the number of bytes is the maximum of what we want to support but we often end up processing smaller datagrams in general. Because of this we should use contineReading(UncheckedBooleanSupplier) to determite if we should continue reading
Modifications:
- use contineReading(UncheckedBooleanSupplier) for DatagramChannels
Result:
Read more then once in the general case for DatagramChannels with the default config
Motivation:
Allow to configure the maximum number of messages to write per eventloop run. This can be useful to ensure we read data in a timely manner and not let writes dominate the CPU time. This is especially useful in protocols like QUIC where you need to read "fast enough" as otherwise you may not read the ACKs fast enough.
Modifications:
- Add new ChannelOption / config that allows to limit the number of messages to write per eventloop run.
- Respect this setting for DatagramChannels
Result:
Reduce the risk of having WRITES block the processing of other events in a timely manner
Co-authored-by: terrarier2111 <58695553+terrarier2111@users.noreply.github.com>
Motivation:
To make it possible to experiment with alternative buffer implementations, we need a way to abstract away the concrete buffers used throughout most of the Netty pipelines, while still having a common currency for doing IO in the end.
Modification:
- Introduce an ByteBufConvertible interface, that allow arbitrary objects to convert themselves into ByteBuf objects.
- Every place in the code, where we did an instanceof check for ByteBuf, we now do an instanceof check for ByteBufConvertible.
- ByteBuf itself implements ByteBufConvertible, and returns itself from the asByteBuf method.
Result:
It is now possible to use Netty with alternative buffer implementations, as long as they can be converted to ByteBuf.
This has been verified elsewhere, with an alternative buffer implementation.
Motiviation:
We need to ensure we only register the methods for unix-native-common once as otherwise it may have strange side-effects.
Modifications:
- Add extra method that should be called to signal that we need to register the methods. The registration will only happen once.
- Adjust code to make use of it.
Result:
No more problems due incorrect registration of these methods.
Motivation:
In some enviroments sun.misc.Unsafe is not present. We should support these as well.
Modifications:
Fallback to JNI if we can't directly access the memoryAddress of the buffer.
Result:
Fixes https://github.com/netty/netty/issues/10813
Motivation:
https in xmlns URIs does not work and will let the maven release plugin fail:
```
[INFO] ------------------------------------------------------------------------
[INFO] BUILD FAILURE
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 1.779 s
[INFO] Finished at: 2020-11-10T07:45:21Z
[INFO] ------------------------------------------------------------------------
[ERROR] Failed to execute goal org.apache.maven.plugins:maven-release-plugin:2.5.3:prepare (default-cli) on project netty-parent: Execution default-cli of goal org.apache.maven.plugins:maven-release-plugin:2.5.3:prepare failed: The namespace xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" could not be added as a namespace to "project": The namespace prefix "xsi" collides with an additional namespace declared by the element -> [Help 1]
[ERROR]
```
See also https://issues.apache.org/jira/browse/HBASE-24014.
Modifications:
Use http for xmlns
Result:
Be able to use maven release plugin
Motivation:
We had a lot of duplication in our jni code which was mostly due macros but also related to how we support shading. By using netty-jni-util we can share all the code between netty and netty-tcnative ( and possible other jni based netty projects in the future).
Modifications:
- Use netty-jni-util and re-use its macros / functions
- Remove duplicated code
- Adjust build files
Result:
Less code duplication for JNI
Motivation:
03aafb9cff did ensure we unregister all native methods when we unload / or fail during load of the native library. Unfortunally it missed to unregister in one case for kqueue.
Modifications:
Add unregister calls to the unload function
Result:
Correctly unregister in all cases
Motivation:
It's important to unload all previous registered native methods when there is a failure during loading the native lib. Failing to do so may lead to an "invalid state" and so may segfault the JVM when trying to call a native method that was previous loaded.
This was observed when two versions of netty-tcnative were on the classpath which had different requirements in terms of linking.
Something like this was reported in he hs log:
```
Instructions: (pc=0x0000000116413bf0)
0x0000000116413bd0:
[error occurred during error reporting (printing registers, top of stack, instructions near pc), id 0xb]
Register to memory mapping:
RAX=0x0000000116413bf0 is an unknown value
RBX={method} {0x000000011422e708} 'aprMajorVersion' '()I' in 'io/netty/internal/tcnative/Library'
RCX=0x000000000000000a is an unknown value
RDX=0x000000000000000a is an unknown value
```
Modifications:
- Unregister previous registered native methods on failure
- Unregister previous registered native methods on on unload of the native lib
Result:
No more segfault caused by invalid state when loading of the native lib fails in between. In this case the user will receive an error now like:
Motivation:
Thread.stop() works by producing a ThreadDeath error in the target thread. EventLoops swallow all Throwables, which makes them effectively unkillable. This is effectively a memory leak, for our application. Beside this we should also just regrow all `Error` as there is almost no way to recover.
Modification:
Edit the EventLoops that swallow Throwables to instead rethrow Error.
Result:
`EventLoop` can crash if `Error` is thrown
Motivation:
HTTP is a plaintext protocol which means that someone may be able
to eavesdrop the data. To prevent this, HTTPS should be used whenever
possible. However, maintaining using https:// in all URLs may be
difficult. The nohttp tool can help here. The tool scans all the files
in a repository and reports where http:// is used.
Modifications:
- Added nohttp (via checkstyle) into the build process.
- Suppressed findings for the websites
that don't support HTTPS or that are not reachable
Result:
- Prevent using HTTP in the future.
- Encourage users to use HTTPS when they follow the links they found in
the code.
Motivation:
DuplexChannel allow for half-closure, we should have a special config interface for it as well.
Modifications:
Add DuplexChannelConfig which allows to configure half-closure.
Result:
More consistent types
Motivation:
Java 16 will come around eventually anyway, and this makes it easier for people to experiment with Early Access builds.
Modification:
- Added Maven profiles for JDK 16 to relevant pom files.
- Removed the `--add-exports java.base/sun.security.x509=ALL-UNNAMED` argument when running tests; we've not needed it since the Java11-as-baseline PR landed.
Result:
Netty now builds on JDK 16 pre-releases (provided they've not broken compatibility in some way).
Motivation:
Creating exceptions is expensive so we should only do so if really needed.
Modifications:
Only create the ConnectTimeoutException if we really need it.
Result:
Less overhead
Motivation:
Noticed we had some unused non-public classes.
There is no reason to keep these around.
Modification:
Remove unused non-public classes.
Result:
Less code to worry about.
Motivation:
When we were using the netty http protocol, OOM occurred, this problem has been in 4.1.51.Final Fix [# 10424](https://github.com/netty/netty/issues/10424), even if OOM is up, the service will still receive new connection events, will occur again OOM and eventually cause the connection not to be released.
code `byteBuf = allocHandle.allocate(allocator);`
Modification:
I fail to create buffer when I try to receive new data, i determine if it is OOM then the close read event releases the connection.
```java
if (close || cause instanceof OutOfMemoryError || cause instanceof IOException) {
closeOnRead(pipeline);
}
```
Result:
Fixes # [10434](https://github.com/netty/netty/issues/10434).
Motivation:
In next major version of netty users should use ChannelHandler everywhere. We should ensure we do the same
Modifications:
Replace usage of deprecated classes / interfaces with ChannelHandler
Result:
Use non-deprecated code
Motivation
The current event loop shutdown logic is quite fragile and in the
epoll/NIO cases relies on the default 1 second wait/select timeout that
applies when there are no scheduled tasks. Without this default timeout
the shutdown would hang indefinitely.
The timeout only takes effect in this case because queued scheduled
tasks are first cancelled in
SingleThreadEventExecutor#confirmShutdown(), but I _think_ even this
isn't robust, since the main task queue is subsequently serviced which
could result in some new scheduled task being queued with much later
deadline.
It also means shutdowns are unnecessarily delayed by up to 1 second.
Modifications
- Add/extend unit tests to expose the issue
- Adjust SingleThreadEventExecutor shutdown and confirmShutdown methods
to explicitly add no-op tasks to the taskQueue so that the subsequent
event loop iteration doesn't enter blocking wait (as looks like was
originally intended)
Results
Faster and more robust shutdown of event loops, allows removal of the default wait timeout.
This is a port of https://github.com/netty/netty/pull/9616
Motivation:
aebe206 added support for using a ChannelOption to set / get Buffer sizes but did not add the methods to the DomainSocketChannelConfig interface itself (due not be able to break the API)
Modifications:
Add methods to interface (as this is a next major release)
Result:
Easier access to configure these buffer sizes
Motivation:
At the moment we not consistently (and also not correctly) free allocated native memory in all cases during loading the JNI library. This can lead to native memory leaks in the unlikely case of failure while trying to load the library.
Beside this we also not always correctly handle the case when a new java object can not be created in native code because of out of memory.
Modification:
- Copy some macros from netty-tcnative to be able to handle errors in a more easy fashion
- Correctly account for New* functions to return NULL
- Share code
Result:
More robust and clean JNI code
Motivation:
It is not safe to cache a jclass without obtaining a global reference via NewGlobalRef.
Modifications:
Correctly use NewGlobalRef(...) before caching
Result:
Correctly cache jclass instance
Motivation:
Running tests with a `KQueueDomainSocketChannel` showed worse performance than an `NioSocketChannel`. It turns out that the default send buffer size for Nio sockets is 64k while for KQueue sockets it's 8k. I verified that manually setting the socket's send buffer size improved perf to expected levels.
Modification:
Plumb the `SO_SNDBUF` and `SO_RCVBUF` options into the `*DomainSocketChannelConfig`.
Result:
Can now configure send and receive buffer sizes for domain sockets.
Motivation:
We should correctly reset the cached local and remote address when a Channel.disconnect() is called and the channel has a notion of disconnect vs close (for example DatagramChannel implementations).
Modifications:
- Correctly reset cached kicak abd remote address
- Update testcase to cover it and so ensure all transports work in a consistent way
Result:
Correctly handle disconnect()
Motivation:
291f80733a introduced a change to use a byte[] to construct the InetAddress when receiving datagram messages to reduce the overhead. Unfortunally it introduced a regression when handling IPv6-mapped-IPv4 addresses and so produced an IndexOutOfBoundsException when trying to fill the byte[] in native code.
Modifications:
- Correctly use the offset on the pointer of the address.
- Add testcase
- Make tests more robust and include more details when the test fails
Result:
No more IndexOutOfBoundsException
Motivation:
When using datagram sockets which need to handle a lot of packets it makes sense to use recvmmsg to be able to read multiple datagram packets with one syscall.
Modifications:
- Add support for recvmmsg on linux
- Add new EpollChannelOption.MAX_DATAGRAM_PACKET_SIZE
- Add tests
Result:
Fixes https://github.com/netty/netty/issues/8446.
Motivation:
We should not only include the java source files but also the c source file in our source jars.
Modifications:
Add files from src/main/c as well
Result:
Fixes https://github.com/netty/netty/issues/9494
Motivation:
On openSUSE (probably more), 64 bit builds use lib64, e.g. /usr/lib64, and
configure picks this up and builds the native library in
native-build/target/lib64 where maven is not looking.
Modifications:
Explicitly specify --libdir=${project.build.directory}/native-build/target/lib
during configuration.
Result:
Maven uses the correct lib directory.
Motivation:
Netty homepage(netty.io) serves both "http" and "https".
It's recommended to use https than http.
Modification:
I changed from "http://netty.io" to "https://netty.io"
Result:
No effects.
Motivation:
Some methods that either override others or are implemented as part of implementation an interface did miss the `@Override` annotation
Modifications:
Add missing `@Override`s
Result:
Code cleanup