Motivation:
32563bfcc1 introduced a regression in which we did now not longer discard the messages after we handled an oversized message.
Modifications:
- Do not set aggregating to false after handleOversizedMessage is called
- Adjust unit tests to verify the behaviour is correct again.
Result:
Fixes https://github.com/netty/netty/issues/9007.
Motivation:
In 42742e233f we already added default methods to Channel*Handler and deprecated the Adapter classes to simplify the class hierarchy. With this change we go even further and merge everything into just ChannelHandler. This simplifies things even more in terms of class-hierarchy.
Modifications:
- Merge ChannelInboundHandler | ChannelOutboundHandler into ChannelHandler
- Adjust code to just use ChannelHandler
- Deprecate old interfaces.
Result:
Cleaner and simpler code in terms of class-hierarchy.
Motivation:
As we now us java8 as minimum java version we can deprecate ChannelInboundHandlerAdapter / ChannelOutboundHandlerAdapter and just move the default implementations into the interfaces. This makes things a bit more flexible for the end-user and also simplifies the class-hierarchy.
Modifications:
- Mark ChannelInboundHandlerAdapter and ChannelOutboundHandlerAdapter as deprecated
- Add default implementations to ChannelInboundHandler / ChannelOutboundHandler
- Refactor our code to not use ChannelInboundHandlerAdapter / ChannelOutboundHandlerAdapter anymore
Result:
Cleanup class-hierarchy and make things a bit more flexible.
Motivation:
PromiseCombiner is not thread-safe and even assumes all added Futures are using the same EventExecutor. This is kind of fragile as we do not enforce this. We need to enforce this contract to ensure it's safe to use and easy to spot concurrency problems.
Modifications:
- Add new contructor to PromiseCombiner that takes an EventExecutor and deprecate the old non-arg constructor.
- Check if methods are called from within the EventExecutor thread and if not fail
- Correctly dispatch on the right EventExecutor if the Future uses a different EventExecutor to eliminate concurrency issues.
Result:
More safe use of PromiseCombiner + enforce correct usage / contract.
Motivation:
We can just use Objects.requireNonNull(...) as a replacement for ObjectUtil.checkNotNull(....)
Modifications:
- Use Objects.requireNonNull(...)
Result:
Less code to maintain.
Motivation:
Just was looking through code and found 1 interesting place DateFormatter.tryParseMonth that was not very effective, so I decided to optimize it a bit.
Modification:
Changed DateFormatter.tryParseMonth method. Instead of invocation regionMatch() for every month - compare chars one by one.
Result:
DateFormatter.parseHttpDate method performance improved from ~3% to ~15%.
Benchmark (DATE_STRING) Mode Cnt Score Error Units
DateFormatter2Benchmark.parseHttpHeaderDateFormatter Sun, 27 Jan 2016 19:18:46 GMT thrpt 6 4142781.221 ± 82155.002 ops/s
DateFormatter2Benchmark.parseHttpHeaderDateFormatter Sun, 27 Dec 2016 19:18:46 GMT thrpt 6 3781810.558 ± 38679.061 ops/s
DateFormatter2Benchmark.parseHttpHeaderDateFormatterNew Sun, 27 Jan 2016 19:18:46 GMT thrpt 6 4372569.705 ± 30257.537 ops/s
DateFormatter2Benchmark.parseHttpHeaderDateFormatterNew Sun, 27 Dec 2016 19:18:46 GMT thrpt 6 4339785.100 ± 57542.660 ops/s
Motivation
Implementations of MessageAggregator (HttpObjectAggregator in particular) may wish to
selectively aggrerage requests and responses on a case-by-case basis such as for example
only POST requests or only responses of a certain content-type.
Modifications
Adding a flag to MessageAggregator that toggles between true/false depending on if aggregation
is desired for the current message or not.
Result
Fixes#8772
Motivation:
ChannelHandler.exceptionCaught(...) was marked as @deprecated as it should only exist in inbound handlers.
Modifications:
Remove ChannelHandler.exceptionCaught(...) and adjust code / tests.
Result:
Fixes https://github.com/netty/netty/issues/8527
Motivation:
We have a utility method to check for > 0 and >0 arguments. We should use it.
Modification:
use checkPositive/checkPositiveOrZero instead of if statement.
Result:
Re-use utility method.
Motivation:
We can use lambdas now as we use Java8.
Modification:
use lambda function for all package, #8751 only migrate transport package.
Result:
Code cleanup.
Motivation:
As netty 4.x supported Java 6 we had various if statements to check for java versions < 8. We can remove these now.
Modification:
Remove unnecessary if statements that check for java versions < 8.
Result:
Cleanup code.
Motivation:
We need to update to a new checkstyle plugin to allow the usage of lambdas.
Modifications:
- Update to new plugin version.
- Fix checkstyle problems.
Result:
Be able to use checkstyle plugin which supports new Java syntax.
* Decouble EventLoop details from the IO handling for each transport to allow easy re-use of code and customization
Motiviation:
As today extending EventLoop implementations to add custom logic / metrics / instrumentations is only possible in a very limited way if at all. This is due the fact that most implementations are final or even package-private. That said even if these would be public there are the ability to do something useful with these is very limited as the IO processing and task processing are very tightly coupled. All of the mentioned things are a big pain point in netty 4.x and need improvement.
Modifications:
This changeset decoubled the IO processing logic from the task processing logic for the main transport (NIO, Epoll, KQueue) by introducing the concept of an IoHandler. The IoHandler itself is responsible to wait for IO readiness and process these IO events. The execution of the IoHandler itself is done by the SingleThreadEventLoop as part of its EventLoop processing. This allows to use the same EventLoopGroup (MultiThreadEventLoupGroup) for all the mentioned transports by just specify a different IoHandlerFactory during construction.
Beside this core API change this changeset also allows to easily extend SingleThreadEventExecutor / SingleThreadEventLoop to add custom logic to it which then can be reused by all the transports. The ideas are very similar to what is provided by ScheduledThreadPoolExecutor (that is part of the JDK). This allows for example things like:
* Adding instrumentation / metrics:
* how many Channels are registered on an SingleThreadEventLoop
* how many Channels were handled during the IO processing in an EventLoop run
* how many task were handled during the last EventLoop / EventExecutor run
* how many outstanding tasks we have
...
...
* Implementing custom strategies for choosing the next EventExecutor / EventLoop to use based on these metrics.
* Use different Promise / Future / ScheduledFuture implementations
* decorate Runnable / Callables when submitted to the EventExecutor / EventLoop
As a lot of functionalities are folded into the MultiThreadEventLoopGroup and SingleThreadEventLoopGroup this changeset also removes:
* AbstractEventLoop
* AbstractEventLoopGroup
* EventExecutorChooser
* EventExecutorChooserFactory
* DefaultEventLoopGroup
* DefaultEventExecutor
* DefaultEventExecutorGroup
Result:
Fixes https://github.com/netty/netty/issues/8514 .
Motivation:
Custom Netty ThreadLocalRandom and ThreadLocalRandomProvider classes are no longer needed and can be removed.
Modification:
Remove own ThreadLocalRandom
Result:
Less code to maintain
Motivation:
PlatformDependent.newConcurrentHashMap() is no longer needed so it could be easily removed and new ConcurrentHashMap<>() inlined instead of invoking PlatformDependent.newConcurrentHashMap().
Modification:
Use ConcurrentHashMap provided by the JDK directly.
Result:
Less code to maintain.
Motivation:
We can use the diamond operator these days.
Modification:
Use diamond operator whenever possible.
Result:
More modern code and less boiler-plate.
Motivation:
Since Java 7 we can automatically close resources in try () construction.
Modification:
Changed all try catches in the code with autoclose try (resource)
Result:
Less boiler-plate
Motivation:
While we are not yet quite sure if we want to require Java11 as minimum we are at least sure we want to use java8 as minimum.
Modifications:
Change minimum version to java8 and update some tests which failed compilation after this change.
Result:
Use Java8 as minimum and be able to use Java8 features.
Motivation:
LineBasedFrameDecoder, JsonObjectDecoder and XmlFrameDecoder upon investigation of the
sourcecode appeared to only support ASCII or UTF-8 input. It is an important characteristic
and ont reflected in any documentation. This could lead to improper usage and bugs.
Modifications:
Javadoc comment is addedd to all three classes to state that implementation is only
compatible with UTF-8 or ASCII input streams and brifly touches on implementaion details.
Result:
The end user of the netty library would not have to study sorcecode to deterime character
encoding limitations for given classes.
Motivation:
ByteBuf supports “marker indexes”. The intended use case for these is if a speculative operation (e.g. decode) is in process the user can “mark” and interface and refer to it later if the operation isn’t successful (e.g. not enough data). However this is rarely used in practice,
requires extra memory to maintain, and introduces complexity in the state management for derived/pooled buffer initialization, resizing, and other operations which may modify reader/writer indexes.
Modifications:
Remove support for marking and adjust testcases / code.
Result:
Fixes https://github.com/netty/netty/issues/8535.
Motivation:
We had some typo (most likely caused by copy-and-paste) in the api docs which should be fixed.
Modifications:
Replace encoder by decoder word.
Result:
Correct apidocs.
Motivation:
If the encoder needs to flush more than one outbound message it will
create a new ChannelPromise for all but the last write which will
swallow failures.
Modification:
Use a PromiseCombiner in the case of multiple messages and the parent
promise isn't the `VoidPromise`.
Result:
Intermediate failures are propagated to the original ChannelPromise.
Motivation:
There are currently many more places where this could be used which were
possibly not considered when the method was added.
If https://github.com/netty/netty/pull/8388 is included in its current
form, a number of these places could additionally make use of the same
BYTE_ARRAYS threadlocal.
There's also a couple of adjacent places where an optimistically-pooled
heap buffer is used for temp byte storage which could use the
threadlocal too in preference to allocating a temp heap bytebuf wrapper.
For example
https://github.com/netty/netty/blob/4.1/buffer/src/main/java/io/netty/buffer/ByteBufUtil.java#L1417.
Modifications:
Replace new byte[] with PlatformDependent.allocateUninitializedArray()
where appropriate; make use of ByteBufUtil.getBytes() in some places
which currently perform the equivalent logic, including avoiding copy of
backing array if possible (although would be rare).
Result:
Further potential speed-up with java9+ and appropriate compile flags.
Many of these places could be on latency-sensitive code paths.
* Optimize AbstractByteBuf.getCharSequence() in US_ASCII case
Motivation:
Inspired by https://github.com/netty/netty/pull/8388, I noticed this
simple optimization to avoid char[] allocation (also suggested in a TODO
here).
Modifications:
Return an AsciiString from AbstractByteBuf.getCharSequence() if
requested charset is US_ASCII or ISO_8859_1 (latter thanks to
@Scottmitch's suggestion). Also tweak unit tests not to require Strings
and include a new benchmark to demonstrate the speedup.
Result:
Speed-up of AbstractByteBuf.getCharSequence() in ascii and iso 8859/1
cases
Motivation:
We need to ensure the Cumulator always releases the input buffer if it can not take over the ownership of it as otherwise it may leak.
Modifications:
- Correctly ensure the buffer is always released.
- Add unit tests.
Result:
Ensure buffer is always released.
Motivation:
In theory our estimation of the needed buffer could be off and so we need to ensure we grow it if there is no space left.
Modifications:
Ensure we grow the buffer if there is no space left in there but we still have data to deflate.
Result:
Correctly deflate data in all cases.
Motivation:
We need to reset the offset to 0 when we fail lazy because of a too long frame.
Modifications:
- Reset offset
- Add testcase
Result:
Fixes https://github.com/netty/netty/issues/8256.
Motivation:
The implementation of CharSequenceValueConverter.convertToByte did not correctly handle AsciiString if the length != 1.
Modifications:
- Only use fast-path for AsciiString with length of 1.
- Add unit tests.
Result:
Fixes https://github.com/netty/netty/issues/7990
Motivation:
We did not correctly copy elements in some cases when add(index, element) was used.
Modifications:
- Correctly detect when copy is neede and when not.
- Add test case.
Result:
Fixes https://github.com/netty/netty/issues/7938.
Motivation:
Some `if` statements contains common parts that can be extracted.
Modifications:
Extract common parts from `if` statements.
Result:
Less code and bytecode. The code is simpler and more clear.
Motivation:
When the JsonObjectDecoder determines that the incoming buffer had some data discarded, it resets the internal index to readerIndex and attempts to adjust the state which does not correctly work for streams of JSON objects.
Modifications:
Reset the internal index to the value considering the previous reads.
Result:
JsonObjectDecoder correctly handles streams of both JSON objects and arrays with no state adjustments or repeatable reads.
Motivation:
6e5fd9311f fixed a bug in EmptyHeaders which was never noticed before because we had no tests.
Modifications:
Add tests for EmptyHeaders.
Result:
EmptyHeaders is tested now.
Motivation:
EmptyHeaders#get with a default value argument returns null. It should never return null, and instead it should return the default value.
Modifications:
- EmptyHeaders#get with a default value should return that default value
Result:
More correct implementation of the Headers API.
Motivation:
The Snappy decoder was failing on valid inputs containing literals
with 2-byte lengths > 0x8000 or copies with 2-byte offsets >= 0x8000.
The decoder was also enforcing an artificially low offset limit of
0x7FFF, something the Snappy format description advises against,
and which prevents decoding valid inputs generated by other encoders.
Modifications:
Interpret 2-byte literal lengths and 2-byte copy offsets as unsigned
shorts, in accordance with the format description and reference
implementation.
Allow any positive offset value. Throw an appropriate exception
for negative values (which can theoretically occur due to arithmetic
overflow on 4-byte offsets, but are unlikely to occur in the wild).
Result:
The Snappy decoder can handle valid inputs that previously caused
it to throw exceptions.
Motivation:
CharSequenceValueConverter#convertToBoolean has a few manual conditionals which can be removed if we use AsciiString.contentEqualsIgnoreCase. Also by comparing an AsciiString to a String we will incur conversions to char that can be avoided if we compare against AsciiString.
Modifications:
- Use AsciiString.contentEqualsIgnoreCase
- Compare against a AsciiString
Result:
Simplified CharSequenceValueConverter#convertToBoolean which favors AsciiString comparison.
Motivation:
If you pass the output of CharSequenceValueConvert.convertToTimeMillis to convertTimeMillis it will throw a ParseException.
Modifications:
- Correctly implement CharSequenceValueConverter.convertTimeMillis
- Add unit-tests for CharSequenceValueConverter
Result:
Correctly convert timemillis.
Motivation:
HeaderEntry.equals() inherets Object.equals() which simply check if two objects are the same.
So it returns false even when two HeaderEntry objects have the same name and value.
Modifications:
Implement HeaderEntry.equals() that follows the specification of Map.Entry.equals().
https://docs.oracle.com/javase/9/docs/api/java/util/Map.Entry.html#equals-java.lang.Object-
Result:
HeaderEntry.equals() returns true if two HeaderEntry objects have the same name and value.
Motivation:
HttpHeaders.getBoolean should return the same truth value for the same string value, regardless of the underlying type.
Modifications:
- Only treat values of true as Boolean.TRUE
- Add unit tests.
Result:
Consistent converting of values for all CharSequence implementations.
Motivation:
Headers.get* methods should not throw an exception but return null or the default value if converting of the value fails.
Modifications:
- Correctly handle the case when ValueConverter throws an Exception.
- Add testcase.
Result:
Fixes [#7710].
Motivation:
We used Recycler for the CodecOutputList which is not optimized for the use-case of access only from the same Thread all the time.
Modifications:
- Use FastThreadLocal for CodecOutputList
- Add benchmark
Result:
Less overhead in our codecs.
Motivation:
Will allow easy removal of deprecated methods in future.
Modification:
Replaced ctx.attr(), ctx.hasAttr() with ctx.channel().attr(), ctx.channel().hasAttr().
Result:
No deprecated ctx.attr(), ctx.hasAttr() methods usage.
Motivation:
According to RFC 1952, concatenation of valid gzip streams is also a valid gzip stream. JdkZlibDecoder only processed the first and discarded the rest.
Modifications:
- Introduced a constructor argument decompressConcatenated that if true, JdkZlibDecoder would continue to process the stream.
Result:
- If 'decompressConcatenated = true', concatenated streams would be processed in
compliance to RFC 1952.
- If 'decompressConcatenated = false' (default), existing behavior would remain.
Motivation:
Allow pre-computing calculation of the constants for compiler where it could be.
Similar fix in OpenJDK: [1].
Modifications:
- Use parentheses.
- Simplify static initialization of `BYTE2HEX_*` arrays in `StringUtil`.
Result:
Less bytecode, possible faster calculations at runtime.
[1] https://bugs.openjdk.java.net/browse/JDK-4477961
Motiviation:
In our replace(...) methods we always used validation for the newly created headers while the original headers may not use validation at all.
Modifications:
- Only use validation if the original headers used validation as well.
- Ensure we create a copy of the headers in replace(...).
Result:
Fixes [#5226]
Motivation:
DefaultHttpHeader.names() exposes HTTP header names as a Set<String>. Converting the resulting set to an array using toArray(String[]) throws an exception: java.lang.ArrayStoreException: io.netty.util.AsciiString.
Modifications:
- Remove our custom implementation of toArray(...) (and others) by just extending AbstractCollection.
- Add unit test
Result:
Fixes [#7428].
Motivation:
For debugging/logging purpose, it would be convenient to have
HttpHeaders#toString implemented.
DefaultHeaders does implement toString be the implementation is suboptimal and allocates a Set for the names and Lists for values.
Modification:
* Introduce HeadersUtil#toString that provides a convenient optimized helper to implement toString for various headers implementations
* Have DefaultHeaders#toString and HttpHeaders#toString delegate their toString implementation to HeadersUtil
Result:
Convenient HttpHeaders#toString. Optimized DefaultHeaders#toString.
Motivation:
HttpObjectEncoder and MessageAggregator treat buffers that are not readable special. If a buffer is not readable, then an EMPTY_BUFFER is written and the actual buffer is ignored. If the buffer has already been released then this will not be correct as the promise will be completed, but in reality the original content shouldn't have resulted in any write because it was invalid.
Modifications:
- HttpObjectEncoder should retain/write the original buffer instead of using EMPTY_BUFFER
- MessageAggregator should retain/write the original ByteBufHolder instead of using EMPTY_BUFFER
Result:
Invalid write operations which happen to not be readable correctly reflect failed status in the promise, and do not result in any writes to the channel.