Motivation:
HttpHeaders.getBoolean should return the same truth value for the same string value, regardless of the underlying type.
Modifications:
- Only treat values of true as Boolean.TRUE
- Add unit tests.
Result:
Consistent converting of values for all CharSequence implementations.
Motivation:
Headers.get* methods should not throw an exception but return null or the default value if converting of the value fails.
Modifications:
- Correctly handle the case when ValueConverter throws an Exception.
- Add testcase.
Result:
Fixes [#7710].
Motivation:
According to RFC 1952, concatenation of valid gzip streams is also a valid gzip stream. JdkZlibDecoder only processed the first and discarded the rest.
Modifications:
- Introduced a constructor argument decompressConcatenated that if true, JdkZlibDecoder would continue to process the stream.
Result:
- If 'decompressConcatenated = true', concatenated streams would be processed in
compliance to RFC 1952.
- If 'decompressConcatenated = false' (default), existing behavior would remain.
Motivation:
Even if it's a super micro-optimization (most JVM could optimize such
cases in runtime), in theory (and according to some perf tests) it
may help a bit. It also makes a code more clear and allows you to
access such methods in the test scope directly, without instance of
the class.
Modifications:
Add 'static' modifier for all methods, where it possible. Mostly in
test scope.
Result:
Cleaner code with proper 'static' modifiers.
Motivation:
Without a 'serialVersionUID' field, any change to a class will make
previously serialized versions unreadable.
Modifications:
Add missed 'serialVersionUID' field for all Serializable
classes.
Result:
Proper deserialization of previously serialized objects.
Motivation:
A large frame will be componsed by many packages. Every time the package
arrived, findEndOfLine will be called from the start of the buffer. It
will cause the complexity of reading frame equal to O(n^2). This can be
eliminated by using a offset to mark the last scan position, when new
package arrived, just find the delimter from the mark. The complexity
will be O(n).
Modification:
Add a offset to mark the last scan position.
Result:
Better performance for read large frame.
Motivation:
The Headers interface supports an interface to get all the headers values corresponding to a particular name. This API returns a List which requires intermediate storage and increases GC pressure.
Modifications:
- Add a method which returns an iterator over all the values for a specific name
Result:
Ability to iterator over values for a specific name with no intermediate collection.
This reverts commit d63bb4811ed8ccd5d9e45853f3ac6aee9da7ecab as this not covered correctly all cases and so could lead to missing fireChannelReadComplete() calls. We will re-evalute d63bb4811ed8ccd5d9e45853f3ac6aee9da7ecab and resbumit a pr once we are sure all is handled correctly
Motivation:
'insideString' and 'openBraces' need a proper handling when streaming
Json array over multiple writes and an element decoding was started but
not completed.
Related to #6969
Modifications:
If the idx is reset:
- 'insideString' has to be reset to 'false' in order to indicate that
array element will be decoded from the beginning
- 'openBraces' has to be reset to '1' to indicate that Json array
decoding is in progress.
Result:
Json array is properly decoded when in streaming mode
Motivation:
Its wasteful and also confusing that channelReadComplete() is called even if there was no message forwarded to the next handler.
Modifications:
- Only call ctx.fireChannelReadComplete() if at least one message was decoded
- Add unit test
Result:
Less confusing behavior. Fixes [#4312].
Motivation:
1. Hash function in the Snappy encoding is wrong probably: used '+' instead of '*'. See the reference implementation [1].
2. Size of the hash table is calculated, but not applied.
Modifications:
1. Fix hash function: replace addition by multiplication.
2. Allocate hash table with calculated size.
3. Use an `Integer.numberOfLeadingZeros` trick for calculate log2.
4. Release buffers in tests.
Result:
1. Better compression. In the test `encodeAndDecodeLongTextUsesCopy` now compressed size is 175 instead of 180 before this change.
2. No redundant allocations for hash table.
3. A bit faster the calc of shift (less an expensive math operations).
[1] 513df5fb5a/snappy.cc (L67)
Motivation:
Calling JsonObjectDecoder#reset while streaming Json array over multiple
writes causes CorruptedFrameException to be thrown.
Modifications:
While streaming Json array and if the current readerIndex has been reset,
ensure that the states will not be reset.
Result:
Fixes#6969
Motivation:
Lz4FrameEncoder maintains internal state, but the life cycle of the buffer is not consistently managed. The buffer is allocated in handlerAdded but freed in close, but the buffer can still be used until handlerRemoved is called.
Modifications:
- Move the cleanup of the buffer from close to handlerRemoved
- Explicitly throw an EncoderException from Lz4FrameEncoder if the encode operation has finished and there isn't enough space to write data
Result:
No more NPE in Lz4FrameEncoder on the buffer.
Motivation:
ByteToMessageDecoder#handlerRemoved will immediately release the cumulation buffer, but it is possible that a child class may still be using this buffer, and therefore use a dereferenced buffer.
Modifications:
- ByteToMessageDecoder#handlerRemoved and ByteToMessageDecoder#decode should coordinate to avoid the case where a child class is using the cumulation buffer but ByteToMessageDecoder releases that buffer.
Result:
Child classes of ByteToMessageDecoder are less likely to reference a released buffer.
Motivation:
We not correctly guarded against overflow and so call Base64.encode(...) with a big buffer may lead to an overflow when calculate the size of the out buffer.
Modifications:
Correctly guard against overflow.
Result:
Fixes [#6620].
Motivation:
If a read-only ByteBuf is passed to the ByteToMessageDecoder.channelRead(...) method we need to make a copy of it once we try to merge buffers for cumulation. This usually is not the case but can for example happen if the local transport is used. This was the cause of the leak report we sometimes saw during the codec-http2 tests, as we are using the local transport and write a read-only buffer. This buffer will then be passed to the peer channel and fired through the pipeline and so end up as the cumulation buffer in the ByteToMessageDecoder. Once the next fragement is received we tried to merge these and failed with a ReadOnlyBufferException which then produced a leak.
Modifications:
Ensure we copy the buffer if its read-only.
Result:
No more exceptions and so leak when a read-only buffer is passed to ByteToMessageDecoder.channelRead(...)
Motivation:
In an effort to better understand how the XmlFrameDecoder works, I consulted the tests to find a method that would reframe the inputs as per the Javadocs for that class. I couldn't find any methods that seemed to be doing it, so I wanted to add one to reinforce my understanding.
Modification:
Add a new test method to XmlFrameDecoder to assert that the reframing works as described.
Result:
New test method is added to XmlFrameDecoder
Motivation:
DatagramPacketEncoder|Decoder should respect if the wrapped handler is sharable or not and depending on that be sharable or not.
Modifications:
- Delegate isSharable() to wrapped handler
- Add test-cases
Result:
Correct behavior
Motivation:
Base64#decode4to3 generally calculates an int value where the contents of the decodabet straddle bytes, and then uses a byte shifting or a full byte swapping operation to get the resulting contents. We can directly calculate the contents and avoid any intermediate int values and full byte swap operations. This will reduce the number of operations required during the decode operation.
Modifications:
- remove the intermediate int in the Base64#decond4to3 method.
- manually do the byte shifting since we are already doing bit/byte manipulations here anyways.
Result:
Base64#decode4to3 requires less operations to compute the end result.
Motivation:
The decode and encode method uses getByte(...) and setByte(...) in loops which can be very expensive because of bounds / reference-count checking. Beside this it also slows-down a lot when paranoid leak-detection is enabled as it will track each access.
Modifications:
- Pack bytes into int / short and so reduce operations on the ByteBuf
- Use ByteProcessor to reduce getByte calls.
Result:
Better performance in general. Also when you run the build with -Pleak the handler module will build in 1/4 of the time it took before.
Motivation:
We have our own ThreadLocalRandom implementation to support older JDKs . That said we should prefer the JDK provided when running on JDK >= 7
Modification:
Using ThreadLocalRandom implementation of the JDK when possible.
Result:
Make use of JDK implementations when possible.
Motivation:
To use jboss-marshalling extra command-line arguments are needed on JDK9+ as it makes use of reflection internally.
Modifications:
Skip jboss-marshalling tests when running on JDK9+ and init of MarshallingFactory fails.
Result:
Be able to build on latest JDK9 release.
Motivation:
We need to ensure we pass all tests when sun.misc.Unsafe is not present.
Modifications:
- Make *ByteBufAllocatorTest work whenever sun.misc.Unsafe is present or not
- Let Lz4FrameEncoderTest not depend on AbstractByteBufAllocator implementation details which take into account if sun.misc.Unsafe is present or not
Result:
Tests pass even without sun.misc.Unsafe.
Motivation:
Currently Netty does not wrap socket connect, bind, or accept
operations in doPrivileged blocks. Nor does it wrap cases where a dns
lookup might happen.
This prevents an application utilizing the SecurityManager from
isolating SocketPermissions to Netty.
Modifications:
I have introduced a class (SocketUtils) that wraps operations
requiring SocketPermissions in doPrivileged blocks.
Result:
A user of Netty can grant SocketPermissions explicitly to the Netty
jar, without granting it to the rest of their application.
Motivation:
LZ4FrameEncoder maintains an internal buffer of incoming data compress, and only writes out compressed data when a size threshold is reached. LZ4FrameEncoder does not override the flush() method, and thus the only way to flush data down the pipeline is via more data or close the channel.
Modifications:
Override the flush() function to flush on demand. Also overrode the allocateBuffer() function so we can more accurately size the output buffer (instead of needing to potatntially realloc via buffer.ensureWritable()).
Result:
Implementation works as described.
Motivation:
Thought there may be a bug so added a testcase to verify everything works as expected.
Modifications:
Added testcase
Result:
More test-coverage.
Motivation:
* DefaultHeaders from netty-codec has some duplicated logic for header date parsing
* Several classes keep on using deprecated HttpHeaderDateFormat
Modifications:
* Move HttpHeaderDateFormatter to netty-codec and rename it into HeaderDateFormatter
* Make DefaultHeaders use HeaderDateFormatter
* Replace HttpHeaderDateFormat usage with HeaderDateFormatter
Result:
Faster and more consistent code
Motiviation:
We used ReferenceCountUtil.releaseLater(...) in our tests which simplifies a bit the releasing of ReferenceCounted objects. The problem with this is that while it simplifies stuff it increase memory usage a lot as memory may not be freed up in a timely manner.
Modifications:
- Deprecate releaseLater(...)
- Remove usage of releaseLater(...) in tests.
Result:
Less memory needed to build netty while running the tests.
Motivation:
2c78902ebc7a81caa0ee6e3892438455f06dec9c ensured buffers were released in the general case but didn't clean up an extra release in LzmaFrameEncoderTest#testCompressionOfBatchedFlowOfData which lead to a double release.
Modifications:
LzmaFrameEncoderTest#testCompressionOfBatchedFlowOfData should not explicitly release the buffer because decompress will release the buffer
Result:
No more reference count exception and failed test.
Motivation:
c1932a8537b742aaf15a7cfacf9f76ad8239f3c7 made an assumption that the LzmaInputStream which wraps a ByteBufInputStream would delegate the close operation to the wrapped stream. This assumption is not true and thus we still had a leak. An issue has been logged with our LZMA dependency https://github.com/jponge/lzma-java/issues/14.
Modifications:
- Force a close on the wrapped stream
Result:
No more leak.
Motivation:
Netty provides a adaptor from ByteBuf to Java's InputStream interface. The JDK Stream interfaces have an explicit lifetime because they implement the Closable interface. This lifetime may be differnt than the ByteBuf which is wrapped, and controlled by the interface which accepts the JDK Stream. However Netty's ByteBufInputStream currently does not take reference count ownership of the underlying ByteBuf. There may be no way for existing classes which only accept the InputStream interface to communicate when they are done with the stream, other than calling close(). This means that when the stream is closed it may be appropriate to release the underlying ByteBuf, as the ownership of the underlying ByteBuf resource may be transferred to the Java Stream.
Motivation:
- ByteBufInputStream.close() supports taking reference count ownership of the underyling ByteBuf
Result:
ByteBufInputStream can assume reference count ownership so the underlying ByteBuf can be cleaned up when the stream is closed.
Motivation:
The unit tests for the compression encoders/decoders may write buffers to an EmbeddedChannel but then may not release buffer or close the channel after the test. This may result in buffer leaks.
Modifications:
- Call channel.finishAndReleaseAll() after each test
Result:
Fixes https://github.com/netty/netty/issues/6007
Motivation:
ObjectOutputStream uses a Channel Attribute to cache a ObjectOutputStream which is backed by a ByteBuf that may be released after an object is encoded and the underlying buffer is written to the channel. On subsequent encode operations the cached ObjectOutputStream will be invalid and lead to a reference count exception.
Modifications:
- CompatibleObjectEncoder should not cache a ObjectOutputStream.
Result:
CompatibleObjectEncoder doesn't use a cached object backed by a released ByteBuf.
Motivation:
the build doesnt seem to enforce this, so they piled up
Modifications:
removed unused import lines
Result:
less unused imports
Signed-off-by: radai-rosenblatt <radai.rosenblatt@gmail.com>
Motivation:
It is good to have used dependencies and plugins up-to-date to fix any undiscovered bug fixed by the authors.
Modification:
Scanned dependencies and plugins and carefully updated one by one.
Result:
Dependencies and plugins are up-to-date.
Motivation:
For example,
DefaultHttp2Headers headers = new DefaultHttp2Headers();
headers.add("key1", "value1");
headers.add("key1", "value2");
headers.add("key1", "value3");
headers.add("key2", "value4");
produces:
DefaultHttp2Headers[key1: value1key1: value2key1: value3, key2: value4]
while correctly it should be
DefaultHttp2Headers[key1: value1, key1: value2, key1: value3, key2: value4]
Modifications:
Change the toString() method to produce the beforementioned output.
Result:
toString() format is correct also for keys with multiple values.
Motivation:
At the moment the user is responsible to increase the writer index of the composite buffer when a new component is added. We should add some methods that handle this for the user as this is the most popular usage of the composite buffer.
Modifications:
Add new methods that autoamtically increase the writerIndex when buffers are added.
Result:
Easier usage of CompositeByteBuf.
Related: #4333#4421#5128
Motivation:
slice(), duplicate() and readSlice() currently create a non-recyclable
derived buffer instance. Under heavy load, an application that creates a
lot of derived buffers can put the garbage collector under pressure.
Modifications:
- Add the following methods which creates a non-recyclable derived buffer
- retainedSlice()
- retainedDuplicate()
- readRetainedSlice()
- Add the new recyclable derived buffer implementations, which has its
own reference count value
- Add ByteBufHolder.retainedDuplicate()
- Add ByteBufHolder.replace(ByteBuf) so that..
- a user can replace the content of the holder in a consistent way
- copy/duplicate/retainedDuplicate() can delegate the holder
construction to replace(ByteBuf)
- Use retainedDuplicate() and retainedSlice() wherever possible
- Miscellaneous:
- Rename DuplicateByteBufTest to DuplicatedByteBufTest (missing 'D')
- Make ReplayingDecoderByteBuf.reject() return an exception instead of
throwing it so that its callers don't need to add dummy return
statement
Result:
Derived buffers are now recycled when created via retainedSlice() and
retainedDuplicate() and derived from a pooled buffer
Motivation:
The double quote may be escaped in a JSON string, but JsonObjectDecoder doesn't handle it. Resolves#5157.
Modifications:
Don't end a JSON string when processing an escaped double quote.
Result:
JsonObjectDecoder can handle backslash and double quote in a JSON string correctly.
Motivation:
b112673554bafc1eccfd43913a3e8605337dd7fb added ChannelInputShutdownEvent support to ByteToMessageDecoder but missed updating the code for ReplayingDecoder. This has the effect:
- If a ChannelInputShutdownEvent is fired ByteToMessageDecoder (the super-class of ReplayingDecoder) will call the channelInputClosed(...) method which will pass the incorrect buffer to the decode method of ReplayingDecoder.
Modifications:
Share more code between ByteToMessageDEcoder and ReplayingDecoder and so also support ChannelInputShutdownEvent correctly in ReplayingDecoder
Result:
ChannelInputShutdownEvent is corrrectly handle in ReplayingDecoder as well.
Motivation:
See #1811
Modifications:
Add LineEncoder and LineSeparator
Result:
The user can use LineEncoder to write a String with a line separator automatically
Motivation:
UDP-oriented codec reusing the existing encoders and decoders would be helpful. See #1350
Modifications:
Add DatagramPacketEncoder and DatagramPacketDecoder to reuse the existing encoders and decoders.
Result:
People can use DatagramPacketEncoder and DatagramPacketDecoder to wrap existing encoders and decoders to create UDP-oriented codec.
Motivation:
If the input buffer is empty we should not have decodeLast(...) call decode(...) as the user may not expect this.
Modifications:
- Not call decode(...) in decodeLast(...) if the input buffer is empty.
- Add testcases.
Result:
decodeLast(...) will not call decode(...) if input buffer is empty.
Motivation:
We not correctly added newlines if the src data needed to be padded. This regression was introduced by '63426fc3ed083513c07a58b45381f5c10dd47061'
Modifications:
- Correctly handling newlines
- Add unit test that proves the fix.
Result:
No more invalid base64 encoded data.
Motivation:
According to https://github.com/google/snappy/blob/master/format_description.txt#L55 , Snappy.decodeLiteral should handle the cases of 60, 61, 62 and 63. However right now it processes 64 instead of 63. I believe it's a typo since `tag >> 2 & 0x3F` must be less than 64.
Modifications:
Use the correct value 63.
Result:
Snappy.decodeLiteral handles the correct case.
Motivation:
Netty was missing support for Protobuf nano runtime targeted at
weaker systems such as Android devices.
Modifications:
Added ProtobufDecoderNano and ProtobufDecoderNano
in order to provide support for Nano runtime.
modified ProtobufVarint32FrameDecoder and
ProtobufLengthFieldPrepender in order to remove any
on either Nano or Lite runtime by copying the code
for handling Protobuf varint32 in from Protobuf
library.
modified Licenses and NOTICE in order to reflect the
changes i made.
added Protobuf Nano runtime as optional dependency
Result:
Netty now supports Protobuf Nano runtime.