Motivation:
Mark Http2StreamChannelBootstrap.open0(...) as deprecated as the user should not use it. It was marked as public by mistake.
Modifications:
Add deprecation warning.
Result:
User will be aware the method should not be used directly.
Motivation:
There are situations where the user may want to be more flexible when to send the PING acks for various reasons or be able to attach a listener to the future that is used for the ping ack. To be able to do so we should allow to manage the acks manually.
Modifications:
- Add constructor to DefaultHttp2ConnectionDecoder that allows to disable the automatically sending of ping acks (default is to send automatically to not break users)
- Add methods to AbstractHttp2ConnectionHandlerBuilder (and sub-classes) to either enable ot disable auto acks for pings
- Make DefaultHttp2PingFrame constructor public that allows to write acks.
- Add unit test
Result:
More flexible way of handling acks.
Motivation
I noticed this while looking at something else.
AbstractEpollStreamChannel::spliceQueue is an MPSC queue but only
accessed from the event loop. So it could be just changed to e.g. an
ArrayDeque. This PR instead reverts to using is as an MPSC queue to
avoid dispatching a task to the EL, as appears was the original
intention.
Modification
Change AbstractEpollStreamChannel::spliceQueue to be volatile and lazily
initialized via double-checked locking. Add tasks directly to the queue
from the public methods rather than possibly waking the EL just to
enqueue.
An alternative is just to change PlatformDependent.newMpscQueue() to new
ArrayDeque() and be done with it :)
Result
Less disruptive channel/fd-splicing.
Motivation:
Based on https://tools.ietf.org/html/rfc6455#section-1.3 - for non-browser
clients, Origin header field may be sent if it makes sense in the context of those clients.
Modification:
Replace Sec-WebSocket-Origin to Origin
Result:
Fixes#9134 .
Motivation:
Recently I'm going to build MQTT broker and client based on Netty. I had MQTT encoder and decoder founded, while no basic examples. So I'm going to share my simple heartBeat MQTT broker and client as an example.
Modification:
New MQTT heartBeat example under io.netty.example/mqtt/heartBeat/.
Result:
Client would send CONNECT and PINGREQ(heartBeat message).
- CONNECT: once channel active
- PINGREQ: once IdleStateEvent triggered, which is 20 seconds in this example
Client would discard all messages it received.
MQTT broker could handle CONNECT, PINGREQ and DISCONNECT messages.
- CONNECT: send CONNACK back
- PINGREQ: send PINGRESP back
- DISCONNECT: close the channel
Broker would close the channel if 2 heartBeat lost, which set to 45 seconds in this example.
Motivation
Debugging SSL/TLS connections through wireshark is a pain -- if the cipher used involves Diffie-Hellman then it is essentially impossible unless you can have the client dump out the master key [1]
This is a work-in-progress change (tests & comments to come!) that introduces a new handler you can set on the SslContext to receive the master key & session id. I'm hoping to get feedback if a change in this vein would be welcomed.
An implementation that conforms to Wireshark's NSS key log[2] file is also included.
Depending on feedback on the PR going forward I am planning to "clean it up" by adding documentation, example server & tests. Implementation will need to be finished as well for retrieving the master key from the OpenSSL context.
[1] https://jimshaver.net/2015/02/11/decrypting-tls-browser-traffic-with-wireshark-the-easy-way/
[2] https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
Modification
- Added SslMasterKeyHandler
- An implementation of the handler that conforms to Wireshark's key log format is included.
Result:
Be able to debug SSL / TLS connections more easily.
Signed-off-by: Farid Zakaria <farid.m.zakaria@gmail.com>
Motivation:
Netty homepage(netty.io) serves both "http" and "https".
It's recommended to use https than http.
Modification:
I changed from "http://netty.io" to "https://netty.io"
Result:
No effects.
Motivation:
Http2ConnectionHandler (and sub-classes) allow to configure a graceful shutdown timeout but only apply it if there is at least one active stream. We should always apply the timeout. This is also true when we try to send a GO_AWAY and close the connection because of an connection error.
Modifications:
- Always apply the timeout if one is configured
- Add unit test
Result:
Always respect gracefulShutdownTimeoutMillis
Motivation:
b3dba317d797e21cc253bb6ad6776307297f612e introduced the concept of Http2SettingsReceivedConsumer but did not correctly inplement DecoratingHttp2ConnectionEncoder.consumeRemoteSettings(...).
Modifications:
- Add missing `else` around the throws
- Add unit tests
Result:
Correctly implement DecoratingHttp2ConnectionEncoder.consumeRemoteSettings(...)
Motivation
The nice change made by @carl-mastrangelo in #9307 for lookup-table
based HPACK Huffman decoding can be simplified a little to remove the
separate flags field and eliminate some intermediate operations.
Modification
Simplify HpackHuffmanDecoder::decode logic including de-dup of the
per-nibble part.
Result
Less code, possibly better performance though not noticeable in a quick
benchmark.
Motivation:
We don't need the extra ChannelPromise when writing headers anymore in Http2FrameCodec. This also means we cal re-use a ChannelFutureListener and so not need to create new instances all the time.
Modifications:
- Just pass the original ChannelPromise when writing headers
- Reuse the ChannelFutureListener
Result:
Two less objects created when writing headers for an not-yet created stream.
Motivation:
The previous used maxHeaderListSize was too low which resulted in exceptions during the benchmark run:
```
io.netty.handler.codec.http2.Http2Exception: Header size exceeded max allowed size (8192)
at io.netty.handler.codec.http2.Http2Exception.connectionError(Http2Exception.java:103)
at io.netty.handler.codec.http2.Http2Exception.headerListSizeError(Http2Exception.java:188)
at io.netty.handler.codec.http2.Http2CodecUtil.headerListSizeExceeded(Http2CodecUtil.java:231)
at io.netty.handler.codec.http2.HpackDecoder$Http2HeadersSink.finish(HpackDecoder.java:545)
at io.netty.handler.codec.http2.HpackDecoder.decode(HpackDecoder.java:132)
at io.netty.handler.codec.http2.HpackDecoderBenchmark.decode(HpackDecoderBenchmark.java:85)
at io.netty.handler.codec.http2.generated.HpackDecoderBenchmark_decode_jmhTest.decode_thrpt_jmhStub(HpackDecoderBenchmark_decode_jmhTest.java:120)
at io.netty.handler.codec.http2.generated.HpackDecoderBenchmark_decode_jmhTest.decode_Throughput(HpackDecoderBenchmark_decode_jmhTest.java:83)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.openjdk.jmh.runner.BenchmarkHandler$BenchmarkTask.call(BenchmarkHandler.java:453)
at org.openjdk.jmh.runner.BenchmarkHandler$BenchmarkTask.call(BenchmarkHandler.java:437)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30)
at java.lang.Thread.run(Thread.java:748)
```
Also we should ensure we only use ascii for header names.
Modifications:
Just use Integer.MAX_VALUE as limit
Result:
Be able to run benchmark without exceptions
Motivation:
There are is some unnecessary code (like toString() calls) which can be cleaned up.
Modifications:
- Remove not needed toString() calls
- Simplify subString(...) calls
- Remove some explicit casts when not needed.
Result:
Cleaner code
Motivation:
ff0045e3e10684425a26f5b6cb02223fb0444141 changed HpackHuffmanDecoder to use a lookup-table which greatly improved performance. We can squeeze out another 3% win by using an ByteProcessor which will reduce the number of bound-checks / reference-count-checks needed by processing byte-by-byte.
Modifications:
Implement logic with ByteProcessor
Result:
Another ~3% perf improvement which shows up when using h2load to simulate load.
`h2load -c 100 -m 100 --duration 60 --warm-up-time 10 http://127.0.0.1:8080`
Before:
```
finished in 70.02s, 620051.67 req/s, 20.70MB/s
requests: 37203100 total, 37203100 started, 37203100 done, 37203100 succeeded, 0 failed, 0 errored, 0 timeout
status codes: 37203100 2xx, 0 3xx, 0 4xx, 0 5xx
traffic: 1.21GB (1302108500) total, 41.84MB (43872600) headers (space savings 90.00%), 460.24MB (482598600) data
min max mean sd +/- sd
time for request: 404us 24.52ms 15.93ms 1.45ms 87.90%
time for connect: 0us 0us 0us 0us 0.00%
time to 1st byte: 0us 0us 0us 0us 0.00%
req/s : 6186.64 6211.60 6199.00 5.18 65.00%
```
With this change:
```
finished in 70.02s, 642103.33 req/s, 21.43MB/s
requests: 38526200 total, 38526200 started, 38526200 done, 38526200 succeeded, 0 failed, 0 errored, 0 timeout
status codes: 38526200 2xx, 0 3xx, 0 4xx, 0 5xx
traffic: 1.26GB (1348417000) total, 42.39MB (44444900) headers (space savings 90.00%), 466.25MB (488893900) data
min max mean sd +/- sd
time for request: 370us 24.89ms 15.52ms 1.35ms 88.02%
time for connect: 0us 0us 0us 0us 0.00%
time to 1st byte: 0us 0us 0us 0us 0.00%
req/s : 6407.06 6435.19 6419.74 5.62 67.00%
```
Motivation:
In the latest release we introduced Http2MultiplexHandler as a replacement of Http2MultiplexCodec. This did split the frame parsing from the multiplexing to allow a more flexible way to handle frames and to make the code cleaner. Unfortunally we did miss to special handle this in Http2ServerUpgradeCodec and so did not correctly add Http2MultiplexHandler to the pipeline before calling Http2FrameCodec.onHttpServerUpgrade(...). This did lead to the situation that we did not correctly receive the event on the Http2MultiplexHandler and so did not correctly created the Http2StreamChannel for the upgrade stream. Because of this we ended up with an NPE if a frame was dispatched to the upgrade stream later on.
Modifications:
- Correctly add Http2MultiplexHandler to the pipeline before calling Http2FrameCodec.onHttpServerUpgrade(...)
- Add unit test
Result:
Fixes https://github.com/netty/netty/issues/9314.
Motivation:
2c99fc0f1290c65685c5036fdc9884921823ad7d introduced a change that eagly recycles the queue. Unfortunally it did not correct protect against re-entrance which can cause a NPE.
Modifications:
- Correctly protect against re-entrance by adding null checks
- Add unit test
Result:
Fixes https://github.com/netty/netty/issues/9319.
Motivation:
When decoding DnsRecord, if the record contains compression pointers, and not all compression pointers are decompressed, but part of the pointers are decompressed. Then when encoding the record, the compressed pointer will point to the wrong location, resulting in bad label problem.
Modification:
Pre-decompressed record RData that may contain compression pointers.
Result:
Fixes#8962
* Correctly take length of ByteBufInputStream into account for readLine() / readByte()
Motivation:
ByteBufInputStream did not correctly take the length into account when validate bounds for readLine() / readByte() which could lead to read more then allowed.
Modifications:
- Correctly take length into account
- Add unit tests
- Fix existing unit test
Result:
Correctly take length of ByteBufInputStream into account.
Related to https://github.com/netty/netty/pull/9306.
On servers with many pipelines or dynamic pipelines, it is easy for end user to make mistake during pipeline configuration. Current message:
`Discarded inbound message PooledUnsafeDirectByteBuf(ridx: 0, widx: 2, cap: 2) that reached at the tail of the pipeline. Please check your pipeline configuration.`
Is not always meaningful and doesn't allow to find the wrong pipeline quickly.
Modification:
Added additional log placeholder that identifies pipeline handlers and channel info. This will allow for the end users quickly find the problem pipeline.
Result:
Meaningful warning when the message reaches the end of the pipeline. Fixes#7285
Motivation:
buffer.isReadable() should not be used to limit the amount of data that can be read as the amount may be less then was is readable.
Modification:
- Use available() which takes the length into account
- Add unit test
Result:
Fixes https://github.com/netty/netty/issues/9305
Motivation:
The AbstractSniHandler previously was willing to tolerate up to three
non-handshake records before a ClientHello that contained an SNI
extension field. This is, so far as I can tell, completely
unnecessary: no TLS implementation will be sending alerts or change
cipher spec messages before ClientHello.
Given that it was not possible to determine why this loop is in
the code to begin with, it's probably just best to remove it.
Modifications:
Remove the for loop.
Result:
The AbstractSniHandler will more rapidly determine whether it should
pass the records on to the default SSL handler.
Co-authored-by: Norman Maurer <norman_maurer@apple.com>
Motivation:
Fix the issue of incorrectly calculating the number of dump rows when using prettyHexDumpmethod in ByteBufUtil. The way to find the remainder is either length % 16 or length & 15
Modification:
Fixed the way to calculate the remainder
Result:
Fixed#9301
Motivation:
Compiling with -Werror,-Wuninitialized complains about the sockaddrs being uninitialized.
I believe this is because the init function netty_unix_socket_initSockaddr is in a
separate compilation unit. Since this code isn't on the criticial path, it's easy
to just memset the variables rather than suppress the warning.
Modification:
Always clear the sockaddrs, even if they will be initialized later.
Result:
Able to compile with warnings turned on
Motivation:
b3dba317d797e21cc253bb6ad6776307297f612e added AbstractHttp2ConnectionBuilder.autoAckSettingsFrame(...) as protected method and made it public for Http2MultiplexCodecBuilder. Unfortunally it did miss to also make it public in Http2FrameCodecBuilder
Modifications:
Correctly override autoAckSettingsFrame in Http2FrameCodecBuilder and so make it usable when building Http2FrameCodec.
Result:
Be able to also configure autoAckSettingsFrame when Http2FrameCodec is used.
Motivation:
There is some manual coping of elements of Collections which can be replaced by Collections.addAll(...) and also some unnecessary semicolons.
Modifications:
- Simplify branches
- Use Collections.addAll
- Code cleanup
Result:
Code cleanup
Motivation:
ByteToMessageDecoder only looks at the last channelRead() in the batch
of channelRead()-s when determining whether or not it should call
ChannelHandlerContext#read() to consume more data when !isAutoRead. This
will lead to read() calls issued unnecessaily and unprompted if the very
last channelRead() didn't result in at least one decoded message, even
if there have been messages decoded from other channelRead()-s in the
current batch.
Modifications:
Track decode outcomes for the entire batch of channelRead() calls and
only issue a read in BTMD if the entire batch of channelRead() calls
yielded no complete messages.
Result:
ByteToMessageDecoder will no longer overread when the very last read
yielded no message, but the batch of reads did.
Motivation:
I've introduced netty/netty-tcnative#421 that introduced exposing OpenSSL master key & client/server
random values with the purpose of allowing someone to log them to debug the traffic via auxiliary tools like Wireshark (see also #8653)
Modification:
Augmented OpenSslEngineTest to include a test which manually decrypts the TLS ciphertext
after exposing the masterkey + client/server random. This acts as proof that the tc-native new methods work correctly!
Result:
More tests
Signed-off-by: Farid Zakaria <farid.m.zakaria@gmail.com>
Motivation:
In line base decoders, lines are split by delimiter, but the delimiter may be \r\n or \r, so in decoding, if findEndOfLine finds delimiter of a line, the length of the delimiter may be 1 or 2, instead of DELIMITER_LENGTH, where the value is fixed to 2.
The second problem is that if the data to be decoded is too long, the decoder will discard too long data, and needs to record the length of the discarded bytes. In the original implementation, the discarded bytes are not accumulated, but are assigned to the currently discarded bytes.
Modification:
Modifications:
Dynamic calculation of the length of delimiter.
In discarding mode, add up the number of characters discarded each time.
Result:
Correctly handle all delimiters and also correctly handle too long frames.
Motivation:
The toString() method should use Arrays.toString() to produce a meaningful String representation for arrays.
Modification:
Use Arrays.toString()
Result:
More useful toString() implementation
Motivation:
We should not propage Http2WindowUpdateFrames to the child channels at all as these are not really use-ful and should not be flow-controlled via `read()` anyway. In the other hand Http2ResetFrame is very useful but should be propagated via an user event so the user is aware of it directly even if the user stops reading.
Modifications:
- Dont propagate Http2WindowUpdateFrames when using Http2MultiplexHandler
- Use user event for Http2ResetFrame when using Http2MultiplexHandler
- Adjust javadoc of Http2MultiplexHandler
- Add unit tests
Result:
Fixes https://github.com/netty/netty/pull/8889 and https://github.com/netty/netty/pull/7635
Motivation:
Http2MultiplexCodec and Http2MultiplexHandler had a very strong coupling with Http2FrameCodec which we can reduce easily. The end-goal should be to have no coupling at all.
Modifications:
- Reduce coupling by move some common logic to Http2CodecUtil
- Move logic to check if a stream may have existed before to Http2FrameCodec
- Use ArrayDeque as replacement for custom double-linked-list which makes the code a lot more readable
- Use WindowUpdateFrame to signal consume bytes (just as users do when they use Http2FrameCodec directly)
Result:
Less coupling and cleaner code.
Motivation:
Some methods that either override others or are implemented as part of implementation an interface did miss the `@Override` annotation
Modifications:
Add missing `@Override`s
Result:
Code cleanup
Motivation:
asList should only be used if there are multiple elements.
Modification:
Call to asList with only one argument could be replaced with singletonList
Result:
Cleaner code and a bit of memory savings
Motivation:
SpotJMHBugs reports that accumulating a value as a way of eliding dead code
elimination may be inadvisable, as discussed in
`JMHSample_34_SafeLooping::measureWrong_2`. Change the test so that it consumes
the response with `Blackhole::consume` instead.
Modifications:
- Replace addition of results with explicit `blackhole.consume()` call
Result:
Tests work as before, but with different benchmark numbers.
Motivation:
Some JMH benchmarks need additional explanations to motivate
specific code choices.
Modifications:
Introduced comment to explai why calling BlackHole::consume
in a loop is not always the right choice for some benchmark.
Result:
The relevant method shows a comment that warn about changing
the code to introduce BlackHole::consume in the loop.
Motivation:
Currently GraalVM substrate returns null for reflective calls if the reflection access is not declared up front.
A change introduced in Netty 4.1.35 results in needing to register every Netty handler for reflection. This complicates matters as it is difficult to know all the possible handlers that need to be registered.
Modification:
This change adds a simple
null check such that Netty does not break on GraalVM substrate without the reflection information registration.
Result:
Fixes#9278
Motivation:
At the moment EmptyByteBuf.getCharSequence(0,...) will return null while it must return a "".
Modifications:
- Let EmptyByteBuf.getCharSequence(0,...) return ""
- Add unit test
Result:
Fixes https://github.com/netty/netty/issues/9271.
Motivation:
The HttpPostRequestEncoder overwrites the original filename of file uploads sharing the same name encoded in mixed mode when it rewrites the multipart body header of the previous file. The original filename should be preserved instead.
Modifications:
Change the HttpPostRequestEncoder to reuse the correct filename when the encoder switches to mixed mode. The original test is incorrect and has been modified too, in addition it tests with an extra file upload since the current test was not testing the continuation of a mixed mode.
Result:
The HttpPostRequestEncoder will preserve the original filename of the first fileupload when switching to mixed mode
Motivation:
HAProxyMessage should be released as it contains a list of TLV which hold a ByteBuf, otherwise, it may cause memory leaks.
Modification:
- Let HAProxyMessage extend AbstractReferenceCounted
- Adjust tests.
Result:
Fixes#9201
Motivation:
In the past we had the following class hierarchy:
Http2ConnectionHandler --- Http2FrameCodec -- Http2MultiplexCodec
This hierarchy makes it impossible to plug in any code that would like to act on Http2Frame and Http2StreamFrame which can be quite useful for various situations (like metrics, logging etc). Beside this it also made the implementtion very hacky. To allow easier maintainance and also allow more flexible costumizations we should split Http2MultiplexCodec and Http2FrameCode.
Modifications:
- Introduce Http2MultiplexHandler (which is a replacement for Http2MultiplexCodec when used together with Http2FrameCodec)
- Mark Http2MultiplexCodecBuilder and Http2MultiplexCodec as deprecated. People should use Http2FrameCodecBuilder / Http2FrameCodec together with Http2MultiplexHandlder in the future
- Adjust / Add tests
- Adjust examples
Result:
More flexible usage possible and less hacky / coupled implementation for http2 multiplexing
Motivation:
I need to control WebSockets inbound flow manually, when autoRead=false
Modification:
Add missed ctx.read() call into WebSocketProtocolHandler, where read request has been swallowed.
Result:
Fixes#9257
Motivation:
FlowControlHandler does use a recyclable ArrayDeque internally but only recycles it when the channel is closed. We should better recycle it once it is empty.
Modifications:
Recycle the deque as fast as possible
Result:
Less RecyclableArrayDeque instances.
Motivation:
Resolve the issue highlighted by SpotJMHBugs that the creation of the RecyclableArrayList may be elided by the JIT since the result isn't consumed or returned.
Modifications:
Return the result of `list.recycle()` so that the list isn't elided.
Result:
The JMH benchmark shows a change in performance indicating that the prior results of this may be unsound.