Motivation:
HTTP/2 codec does not properly test exception passed to
exceptionCaught() for instanceof Http2Exception (since the exception
will always be wrapped in a PipelineException), so it will never
properly handle Http2Exceptions in the pipeline.
Also if any streams are present, the connection close logic will execute
twice when a pipeline exception. This is because the exception logic
calls ctx.close() which then triggers the handleInActive() logic to
execute. This clears all of the remaining streams and then attempts to
run the closeListener logic (which has already been run).
Modifications:
Changed exceptionCaught logic to properly extract Http2Exception from
the PipelineException. Also added logic to the closeListener so that is
only run once.
Changed Http2CodecUtil.toHttp2Exception() to avoid NPE when creating
an exception with cause.getMessage().
Refactored Http2ConnectionHandler to more cleanly separate inbound and
outbound flows (Http2ConnectionDecoder/Http2ConnectionEncoder).
Added a test for verifying that a pipeline exception closes the
connection.
Result:
Exception handling logic is tidied up.
Motivation:
A discovered typo in LzmaFrameEncoder constructor when we check `lc + lp` for better compatibility.
Modifications:
Changed `lc + pb` to `lc + lp`.
Result:
Correct check of `lc + lp` value.
Motivation:
The HTTP/2 spec does not restrict headers to being String. The current
implementation of the HTTP/2 codec uses Strings as header keys and
values. We should change this so that header keys and values allow
binary values.
Modifications:
Making Http2Headers based on AsciiString, which is a wrapper around a
byte[].
Various changes throughout the HTTP/2 codec to use the new interface.
Result:
HTTP/2 codec no longer requires string headers.
Motivation:
LZMA compression algorithm has a very good compression ratio.
Modifications:
- Added `lzma-java` library which implements LZMA algorithm.
- Implemented LzmaFrameEncoder which extends MessageToByteEncoder and provides compression of outgoing messages.
- Added tests to verify the LzmaFrameEncoder and how it can compress data for the next uncompression using the original library.
Result:
LZMA encoder which can compress data using LZMA algorithm.
Motivation:
ExtensionRegistry is a subclass of ExtensionRegistryLite. The ProtobufDecoder
doesn't use the registry directly, it simply passes it through to the Protobuf
API. The Protobuf calls in question are themselves written in terms
ExtensionRegistryLite not ExtensionRegistry.
Modifications:
Require ExtensionRegistryLite instead of ExtensionRegistry in ProtobufDecoder.
Result:
Consumers can use ExtensionRegistryLite with ProtobufDecoder.
Motivation:
The priority information reported by the HTTP/2 to HTTP tranlsation layer is not correct in all situations.
The HTTP translation layer is not using the Http2Connection.Listener interface to track tree restructures.
This incorrect information is being sent up to clients and is misleading.
Modifications:
-Restructure InboundHttp2ToHttpAdapter to allow a default data/header mode
-Extend this interface to provide an optional priority translation layer
Result:
-Priority information being correctly reported in HTTP/2 to HTTP translation layer
-Cleaner code with seperation of concerns (optional priority conversion).
Related issue: #2821
Motivation:
There's no way for a user to change the default ZlibEncoder
implementation.
It is already possible to change the default ZlibDecoder implementation.
Modification:
Add a new system property 'io.netty.noJdkZlibEncoder'.
Result:
A user can disable JDK ZlibEncoder, just like he or she can disable JDK
ZlibDecoder.
Motivation:
HTTP/2 draft 14 came out a couple of weeks ago and we need to keep up
with the spec.
Modifications:
-Revert back to dispatching FullHttpMessage objects instead of individual HttpObjects
-Corrections to HttpObject comparitors to support test cases
-New test cases to support sending headers immediatley
-Bug fixes cleaned up to ensure the message flow is terminated properly
Result:
Netty HTTP/2 to HTTP/1.x translation layer will support the HTTP/2 draft message flow.
Motivation:
We have some duplicated code that can be reused.
Modifications:
Create package private class called CodecUtil that now contains the shared code / helper method.
Result:
Less code-duplication
Motivation:
ByteToMessageCodec miss to check for @Sharable annotation in one of its constructors.
Modifications:
Ensure we call checkForSharableAnnotation in all constructors.
Result:
After your change, what will change.
Motivation:
LZ4 compression codec provides sending and receiving data encoded by very fast LZ4 algorithm.
Modifications:
- Added `lz4` library which implements LZ4 algorithm.
- Implemented Lz4FramedEncoder which extends MessageToByteEncoder and provides compression of outgoing messages.
- Added tests to verify the Lz4FramedEncoder and how it can compress data for the next uncompression using the original library.
- Implemented Lz4FramedDecoder which extends ByteToMessageDecoder and provides uncompression of incoming messages.
- Added tests to verify the Lz4FramedDecoder and how it can uncompress data after compression using the original library.
- Added integration tests for Lz4FramedEncoder/Decoder.
Result:
Full LZ4 compression codec which can compress/uncompress data using LZ4 algorithm.
Motivation:
ByteToMessageDecoder and ReplayingDecoder have incorrect javadocs in some places.
Modifications:
Fix incorrect javadocs for both classes.
Result:
Correct javadocs for both classes
Motivation:
FastLZ compression codec provides sending and receiving data encoded by fast FastLZ algorithm using block mode.
Modifications:
- Added part of `jfastlz` library which implements FastLZ algorithm. See FastLz class.
- Implemented FastLzFramedEncoder which extends MessageToByteEncoder and provides compression of outgoing messages.
- Implemented FastLzFramedDecoder which extends ByteToMessageDecoder and provides uncompression of incoming messages.
- Added integration tests for `FastLzFramedEncoder/Decoder`.
Result:
Full FastLZ compression codec which can compress/uncompress data using FastLZ algorithm.
Motivation:
The HTTP/2 codec currently provides direct callbacks to access stream events/data. The HTTP/2 codec provides the protocol support for HTTP/2 but it does not pass messages up the context pipeline. It would be nice to have a decoder which could collect the data framed by HTTP/2 and translate this into traditional HTTP type objects. This would allow the traditional Netty context pipeline to be used to separate processing concerns (i.e. HttpContentDecompressor). It would also be good to have a layer which can translate FullHttp[Request|Response] objects into HTTP/2 frame outbound events.
Modifications:
Introduce a new InboundHttp2ToHttpAdapter and supporting classes which will translate HTTP/2 stream events/data into HttpObject objects. Introduce a new DelegatingHttp2HttpConnectionHandler which will translate FullHttp[Request|Response] objects to HTTP/2 frame events.
Result:
Introduced HTTP/2 frame events to HttpObject layer.
Introduced FullHttp[Request|Response] to HTTP/2 frame events.
Introduced new unit tests to support new code.
Updated HTTP/2 client example to use new code.
Miscelaneous updates and bug fixes made to support new code.
Motivation:
It is often very expensive to instantiate an exception. TextHeader
should not raise an exception when it failed to find a header or when
its header value is not valid.
Modification:
- Change the return type of the getter methods to Integer and Long so
that null is returned when no header is found or its value is invalid
- Update Javadoc
Result:
- Fixes#2758
- No unnecessary instantiation of exceptions
Related issue: #2649 and #2745
Motivation:
At the moment there is no way to get and remove a header with one call.
This means you need to search the headers two times. We should add
getAndRemove(...) to allow doing so with one call.
Modifications:
Add getAndRemove(...) and getUnconvertedAndRemove(...) and their
variants
Result:
More efficient API
Motivation:
Before this changes Bzip2BitReader and Bzip2BitWriter accessed to ByteBuf byte by byte. So tests for Bzip2 compression codec takes a lot of time if we ran them with paranoid level of resource leak detection. For more information see comments to #2681 and #2689.
Modifications:
- Increased size of bit buffers from 8 to 64 bits.
- Improved reading and writing operations.
- Save link to incoming ByteBuf inside Bzip2BitReader.
- Added methods to check possible readable bits and bytes in Bzip2BitReader.
- Updated Bzip2 classes to use new API of Bzip2BitReader.
- Added new constants to Bzip2Constants.
Result:
Increased size of bit buffers and improved performance of Bzip2 compression codec (for general work by 13% and for tests with paranoid level of resource leak detection by 55%).
Motivation:
In ReplayingDecoder / ByteToMessageDecoder channelInactive(...) method we try to decode a last time and fire all decoded messages throw the pipeline before call ctx.fireChannelInactive(...). To keep the correct order of events we also need to call ctx.fireChannelReadComplete() if we read anything.
Modifications:
- Channel channelInactive(...) to call ctx.fireChannelReadComplete() if something was decoded
- Move out.recycle() to finally block
Result:
Correct order of events.
Motivation:
Complicated code of Bzip2 tests with some unnecessary actions.
Modifications:
- Reduce size of BYTES_LARGE array of random test data for Bzip2 tests.
- Removed unnecessary creations of EmbeddedChannel instances in Bzip2 tests.
- Simplified tests in Bzip2DecoderTest which expect exception.
- Removed unnecessary testStreamInitialization() from Bzip2EncoderTest.
Result:
Reduced time to test the 'codec' package by 7 percent, simplified code of Bzip2 tests.
Motivation:
Duplicated code of integration tests for different compression codecs.
Modifications:
- Added abstract class IntegrationTest which contains common tests for any compression codec.
- Removed common tests from Bzip2IntegrationTest and LzfIntegrationTest.
- Implemented abstract methods of IntegrationTest in Bzip2IntegrationTest, LzfIntegrationTest and SnappyIntegrationTest.
Result:
Removed duplicated code of integration tests for compression codecs and simplified an addition of integration tests for new compression codecs.
Motivation:
Sometimes we have a 'build time out' error because tests for bzip2 codec take a long time.
Modifications:
Removed cycles from Bzip2EncoderTest.testCompression(byte[]) and Bzip2DecoderTest.testDecompression(byte[]).
Result:
Reduced time to test the 'codec' package by 30 percent.
Motivation:
Fixed founded mistakes in compression codecs.
Modifications:
- Changed return type of ZlibUtil.inflaterException() from CompressionException to DecompressionException
- Updated @throws in javadoc of JZlibDecoder to throw DecompressionException instead of CompressionException
- Fixed JdkZlibDecoder to throw DecompressionException instead of CompressionException
- Removed unnecessary empty lines in JdkZlibEncoder and JZlibEncoder
- Removed public modifier from Snappy class
- Added MAX_UNCOMPRESSED_DATA_SIZE constant in SnappyFramedDecoder
- Used in.readableBytes() instead of (in.writerIndex() - in.readerIndex()) in SnappyFramedDecoder
- Added private modifier for enum ChunkType in SnappyFramedDecoder
- Fixed potential bug (sum overflow) in Bzip2HuffmanAllocator.first(). For more info, see http://googleresearch.blogspot.ru/2006/06/extra-extra-read-all-about-it-nearly.html
Result:
Fixed sum overflow in Bzip2HuffmanAllocator, improved exceptions in ZlibDecoder implementations, hid Snappy class
Motivation:
We create a new CompactObjectInputStream with ByteBufInputStream in ObjectDecoder.decode(...) method and don't close this InputStreams before return statement.
Modifications:
Save link to the ObjectInputStream and close it before return statement.
Result:
Close InputStreams and clean up unused resources. It will be better for GC.
Motivation:
LZF compression codec provides sending and receiving data encoded by very fast LZF algorithm.
Modifications:
- Added Compress-LZF library which implements LZF algorithm
- Implemented LzfEncoder which extends MessageToByteEncoder and provides compression of outgoing messages
- Added tests to verify the LzfEncoder and how it can compress data for the next uncompression using the original library
- Implemented LzfDecoder which extends ByteToMessageDecoder and provides uncompression of incoming messages
- Added tests to verify the LzfDecoder and how it can uncompress data after compression using the original library
- Added integration tests for LzfEncoder/Decoder
Result:
Full LZF compression codec which can compress/uncompress data using LZF algorithm.
Motivation:
It's not always the case that there is another handler in the pipeline that will intercept the exceptionCaught event because sometimes users just sub-class. In this case the exception will just hit the end of the pipeline.
Modification:
Throw the TooLongFrameException so that sub-classes can handle it in the exceptionCaught(...) method directly.
Result:
Sub-classes can correctly handle the exception,
Add permessage-deflate and deflate-frame WebSocket extension
implementations.
Motivation:
Need to compress HTTP WebSocket frames payload.
Modifications:
- Move UTF8 checking of WebSocketFrames from frame decoder to and
external handler.
- Change ZlibCodecFactory in order to use ZLib implentation instead of
JDK if windowSize or memLevel is different from the default one.
- Add WebSocketServerExtensionHandler and
WebSocketClientExtensionHandler to handle WebSocket Extension headers.
- Add DeflateFrame and PermessageDeflate extension implementations.
Motivation:
Collect all bit-level read operations in one class is better. And now it's easy to use not only in Bzip2Decoder. For example, in Bzip2HuffmanStageDecoder.
Modifications:
Created a new class - Bzip2BitReader which provides bit-level reads.
Removed bit-level read operations from Bzip2Decoder.
Improved javadoc.
Result:
Bzip2BitReader allows the reading of single bit booleans, bit strings of arbitrary length (up to 24 bits), and bit aligned 32-bit integers.
Motivation:
There's no way to recover from a corrupted JSON stream. The current
implementation will raise an infinite exception storm when a peer sends
a large corrupted stream.
Modification:
Discard everything once stream corruption is detected.
Result:
Fixes a buffer leak
Fixes exception storm
Motivation:
See GitHub Issue #2536.
Modifications:
Introduce the class JsonObjectDecoder to split a JSON byte stream
into individual JSON objets/arrays.
Result:
A Netty application can now handle a byte stream where multiple JSON
documents follow eachother as opposed to only a single JSON document
per request.
Motivation:
bytesBefore(length, ...), bytesBefore(index, length, ...), and
indexOf(fromIndex, toIndex,...) in ReplayingDecoderBuffer are buggy.
They trigger 'REPLAY even when they don't need to.
Modification:
Implement the buggy methods properly so that REPLAYs are not triggered
unnecessarily.
Result:
Correct behvaior
Motivation:
At the moment we use a lot of unnecessary memory copies in JdkZlibEncoder. This is caused by either allocate a to small ByteBuf and expand it later or using a temporary byte array.
Beside this the memory footprint of JdkZlibEncoder is pretty high because of the byte[] used for compressing.
Modification:
- Override allocateBuffer(...) and calculate the estimatedsize in there, this reduce expanding of the ByteBuf later
- Not use byte[] in the instance itself but allocate a heap ByteBuf and write directly into the byte array
Result:
Less memory copies and smaller memory footprint
If decompression fails, the buffer that contains the decompressed data
is not released. Bzip2DecoderTest.testStreamCrcError() also does not
release the partial output Bzip2Decoder produces.