Motivation:
We need to ensure we always null out (or set) the address on the java.net.DatagramPacket when doing read or write operation as the same instance is used across different calls.
Modifications:
Null out the address if needed.
Result:
Ensure the correct remote address is used when connect / disconnect between calls and also mix these with calls that directly specify the remote address for adatagram packets.
Motivation:
We need to support SO_TIMEOUT for the OioDatagramChannel but we miss this atm as we not have special handling for it in the DatagramChannelConfig impl that we use. Because of this the following log lines showed up when running the testsuite:
20:31:26.299 [main] WARN io.netty.bootstrap.Bootstrap - Unknown channel option 'SO_TIMEOUT' for channel '[id: 0x7cb9183c]'
Modifications:
- Add OioDatagramChannelConfig and impl
- Correctly set SO_TIMEOUT in testsuite
Result:
Support SO_TIMEOUT for OioDatagramChannel and so faster execution of datagram related tests in the testsuite
Motivation:
Implementations of DuplexChannel delegate the shutdownOutput to the underlying transport, but do not take any action on the ChannelOutboundBuffer. In the event of a write failure due to the underlying transport failing and application may attempt to shutdown the output and allow the read side the transport to finish and detect the close. However this may result in an issue where writes are failed, this generates a writability change, we continue to write more data, and this may lead to another writability change, and this loop may continue. Shutting down the output should fail all pending writes and not allow any future writes to avoid this scenario.
Modifications:
- Implementations of DuplexChannel should null out the ChannelOutboundBuffer and fail all pending writes
Result:
More controlled sequencing for shutting down the output side of a channel.
Motivation:
When a user called ctx.close() and used the EmbeddedChannel we did not correctly run all pending tasks which means channelInactive was never called.
Modifications:
Ensure we run all pending tasks after all operations that may change the Channel state and are part of the Channel.Unsafe impl.
Result:
Fixes [#6894].
Motivation:
ErrorProne complains that the array override doesn't match the
vararg super call. See http://errorprone.info/bugpattern/Overrides
Additionally, almost every other Future uses the vararg form, so
it would be stylistically consistent to keep it that way.
Modifications:
Use vararg override.
Result:
Cleaner, less naggy code.
Motivation:
DefaultChannelPipeline.estimatorHandle needs to be volatile as its accessed from different threads.
Modifications:
Make DefaultChannelPipeline.estimatorHandle volatile and correctly init it via CAS
Result:
No more race.
Motivation:
We previously used pollLast() to retrieve a Channel from the queue that backs SimpleChannelPool. This could lead to the problem that some Channels are very unfrequently used and so when these are used the connection was already be closed and so could not be reused.
Modifications:
Allow to configure if the last recent used Channel should be used or the "oldest".
Result:
More flexible usage of ChannelPools
Motivation:
Some ChannelOptions must be set before the Channel is really registered to have the desired effect.
Modifications:
Add another constructor argument which allows to not register the EmbeddedChannel to its EventLoop until the user calls register().
Result:
More flexible usage of EmbeddedChannel. Also Fixes [#6968].
Motivation:
We had recently a report that the issue [#6607] is still not fixed.
Modifications:
Add a testcase to prove the issue is fixed.
Result:
More tests.
Motivation:
JCTools 2.0.2 provides an unbounded MPSC linked queue. Before we shaded JCTools we had our own unbounded MPSC linked queue and used it in various places but gave this up because there was no public equivalent available in JCTools at the time.
Modifications:
- Use JCTool's MPSC linked queue when no upper bound is specified
Result:
Fixes https://github.com/netty/netty/issues/5951
Motivation:
Each call to SSL_write may introduce about ~100 bytes of overhead. The OpenSslEngine (based upon OpenSSL) is not able to do gathering writes so this means each wrap operation will incur the ~100 byte overhead. This commit attempts to increase goodput by aggregating the plaintext in chunks of <a href="https://tools.ietf.org/html/rfc5246#section-6.2">2^14</a>. If many small chunks are written this can increase goodput, decrease the amount of calls to SSL_write, and decrease overall encryption operations.
Modifications:
- Introduce SslHandlerCoalescingBufferQueue in SslHandler which will aggregate up to 2^14 chunks of plaintext by default
- Introduce SslHandler#setWrapDataSize to control how much data should be aggregated for each write. Aggregation can be disabled by setting this value to <= 0.
Result:
Better goodput when using SslHandler and the OpenSslEngine.
Motivation:
The behaviour of the FixedChannelPool.release was inconsistent with the
SimpleChannelPool implementation, in that given promise is returned.
In the FixedChannelPool implementation a new promise was return and
this meant that the completion of that promise can be different.
Specifically on releasing a channel to a closed pool, the parameter
promise is failed with an IllegalStateException but the returned one
will have been successful (as it was completed by call to super
.release)
Modification:
Return the given promise as the result of FixedChannelPool.release
Result:
Returned promise will reflect the result of the release operation.
Motivation:
Channels returned to a FixedChannelPool after closing it remain active.
Since channels that where acquired from the pool are not closed during the close operation, they remain open even after releasing the channel back to the pool where they are then in accessible and become in-effect a connection leak.
Modification:
Close the released channel on releasing back to a closed pool.
Result:
Much harder to create a connection leak by closing an active
FixedChannelPool instance.
Motivation:
We should not fail the promise when a closed Channel is offereed back to the ChannelPool as we explicit mention that the Channel must always be returned.
Modifications:
- Not fail the promise
- Add test-case
Result:
Fixes [#6831]
Motivation:
ChannelPipeline will happily add a handler to a closed Channel's pipeline and will call handlerAdded(...) but will not call handlerRemoved(...).
Modifications:
Check if pipeline was destroyed and if so not add the handler at all but propergate an exception.
Result:
Fixes [#6768]
Motivation:
We currently don't have a native transport which supports kqueue https://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2. This can be useful for BSD systems such as MacOS to take advantage of native features, and provide feature parity with the Linux native transport.
Modifications:
- Make a new transport-native-unix-common module with all the java classes and JNI code for generic unix items. This module will build a static library for each unix platform, and included in the dynamic libraries used for JNI (e.g. transport-native-epoll, and eventually kqueue).
- Make a new transport-native-unix-common-tests module where the tests for the transport-native-unix-common module will live. This is so each unix platform can inherit from these test and ensure they pass.
- Add a new transport-native-kqueue module which uses JNI to directly interact with kqueue
Result:
JNI support for kqueue.
Fixes https://github.com/netty/netty/issues/2448
Fixes https://github.com/netty/netty/issues/4231
This fixes#6652.
Rationale
The invocation of initChannel of ChannelInitializer has been moved to as
early as during handlerAdded is invoked in 26aa34853, whereas it was
only invoked during channelRegistered is invoked before that. So the
comment does not describe how handlers are added in normal circumstances
anymore.
However, the code is kept as-is since there might be unusual cases, and
adding ServerBootstrapAcceptor via the event loop is always safe to
enforce the correct order.
Motivation:
In cases when an application is running in a container or is otherwise
constrained to the number of processors that it is using, the JVM
invocation Runtime#availableProcessors will not return the constrained
value but rather the number of processors available to the virtual
machine. Netty uses this number in sizing various resources.
Additionally, some applications will constrain the number of threads
that they are using independenly of the number of processors available
on the system. Thus, applications should have a way to globally
configure the number of processors.
Modifications:
Rather than invoking Runtime#availableProcessors, Netty should rely on a
method that enables configuration when the JVM is started or by the
application. This commit exposes a new class NettyRuntime for enabling
such configuraiton. This value can only be set once. Its default value
is Runtime#availableProcessors so that there is no visible change to
existing applications, but enables configuring either a system property
or configuring during application startup (e.g., based on settings used
to configure the application).
Additionally, we introduce the usage of forbidden-apis to prevent future
uses of Runtime#availableProcessors from creeping. Future work should
enable the bundled signatures and clean up uses of deprecated and
other forbidden methods.
Result:
Netty can be configured to not use the underlying number of processors,
but rather the constrained number of processors.
Motivation:
We need to release all the buffers that may be put into our inbound queue since we closed the Channel to ensure we not leak any memory. This is fine as it basically gives the same guarantees as TCP which means even if the promise was notified before its not really guaranteed that the "remote peer" will see the buffer at all.
Modifications:
Ensure we release all buffers in the inbound buffer if a doClose() is called.
Result:
No more leaks.
Motivation:
1. The use of InternetProtocolFamily is not consistent:
the DnsNameResolverContext and DnsNameResolver contains switches
instead of appropriate methods usage.
2. The InternetProtocolFamily class contains redundant switches in the
constructor.
Modifications:
1. Replacing switches to the use of an appropriate methods.
2. Simplifying the InternetProtocolFamily constructor.
Result:
Code is cleaner and simpler.
Motivation:
When a VoidChannelPromise is used by the user we need to ensure we propergate the exception through the ChannelPipeline otherwise the exception will just be swallowed and so the user has no idea whats going on.
Modifications:
- Always call tryFailure / trySuccess even when we use the VoidChannelPromise
- Add unit test
Result:
Fixes [#6622].
Motivation:
Commit 795f318 simplified some code related to the special case Set for the selected keys and introduced a Selector wrapper to make sure this set was properly reset. However the JDK makes assumptions about the type of Selector and this type is not extensible. This means whenever we call into the JDK we must provide the unwrapped version of the Selector or we get a ClassCastException. We missed a case of unwrapping in NioEventLoop#rebuildSelector0.
Modificaitons:
- NioEventLoop#openSelector should return a tuple so we can atomically set the wrapped and unwrapped Selector
- NioEventLoop#rebuildSelector0 should use the unwrapped version of the selector
Result:
Fixes https://github.com/netty/netty/issues/6607.
Motivation:
The code accidentally passes channel twice instead of value, resulting in logs like:
Failed to set channel option 'SO_SNDBUF' with value '[id: 0x2c5b2eb4]' for channel '[id: 0x2c5b2eb4]'
Modifications:
Pass value instead of channel where it needs to be.
Result:
Failed to set channel option 'SO_SNDBUF' with value '0' for channel '[id: 0x9bd3c5b8]'
Motivation:
We forked a new process to detect if the program is run by root. We should better just use user.name system property
Modifications:
- Change PlatformDependent.isRoot0() to read the user.name system property to detect if root runs the program and rename it to maybeSuperUser0().
- Rename PlatformDependent.isRoot() to maybeSuperUser() and let it init directly in the static block
Result:
Less heavy way to detect if the program is run by root.
Make the FileRegion comments about which transports are supported more accurate.
Also, eleminate any outstanding references to FileRegion.transfered as the method was renamed for spelling.
Modifications:
Class-level comment on FileRegion, can call renamed method.
Result:
More accurate documentation and less calls to deprecated methods.
Motivation:
There are numerous usages of internalNioBuffer which hard code 0 for the index when the intention was to use the readerIndex().
Modifications:
- Remove hard coded 0 for the index and use readerIndex()
Result:
We are less susceptible to using the wrong index, and don't make assumptions about the ByteBufAllocator.
Motivation:
Calling a static method is faster then dynamic
Modifications:
Add 'static' keyword for methods where it missed
Result:
A bit faster method calls
Motivation:
When "Too many open files" happens,the URLClassLoader cannot do any classloading because URLClassLoader need a FD for findClass. Because of this the anonymous inner class that is created to re-enable auto read may cause a problem.
Modification:
Pre-create Runnable that is scheduled and so ensure it is not lazy loaded.
Result:
No more problems when try to recover.
Motivation:
We have our own ThreadLocalRandom implementation to support older JDKs . That said we should prefer the JDK provided when running on JDK >= 7
Modification:
Using ThreadLocalRandom implementation of the JDK when possible.
Result:
Make use of JDK implementations when possible.
Motivation:
SelectedSelectionKeySet currently uses 2 arrays internally and users are expected to call flip() to access the underlying array and switch the active array. However we do not concurrently use 2 arrays at the same time and we can get away with using a single array if we are careful about when we reset the elements of the array.
Modifications:
- Introduce SelectedSelectionKeySetSelector which wraps a Selector and ensures we reset the underlying SelectedSelectionKeySet data structures before we select
- The loop bounds in NioEventLoop#processSelectedKeysOptimized can be defined more precisely because we know the real size of the underlying array
Result:
Fixes https://github.com/netty/netty/issues/6058
Motiviation:
Simplify implementation of compareTo/equals/hashCode for ChannelIds.
Modifications:
We simplfy the hashCode implementation for DefaultChannelId by not
making it random, but making it based on the underlying data. We fix the
compareTo implementation for DefaultChannelId by using lexicographic
comparison of the underlying data array. We fix the compareTo
implementation for CustomChannelId to avoid the possibility of overflow.
Result:
Cleaner code that is easier to maintain.
Motivation:
Initialization of PlatformDependent0 fails on Java 9 in static initializer when calling setAccessible(true).
Modifications:
Add RefelectionUtil which can be used to safely try if setAccessible(true) can be used or not and if not fail back to non reflection.
Result:
Fixed [#6345]
Motivation:
EPOLL annotates some exceptions to provide the remote address, but the original exception is not preserved. This may make determining a root cause more difficult. The static EPOLL exceptions references the native method that failed, but does not provide a description of the actual error number. Without the description users have to know intimate details about the native calls and how they may fail to debug issues.
Modifications:
- annotated exceptions should preserve the original exception
- static exceptions should include the string description of the expected errno
Result:
EPOLL exceptions provide more context and are more useful to end users.
Motivation:
EpollRecvByteAllocatorHandle intends to override the meaning of "maybe more data to read" which is a concept also used in all existing implementations of RecvByteBufAllocator$Handle but the interface doesn't support overriding. Because the interfaces lack the ability to propagate this computation EpollRecvByteAllocatorHandle attempts to implement a heuristic on top of the delegate which may lead to reading when we shouldn't or not reading data.
Modifications:
- Create a new interface ExtendedRecvByteBufAllocator and ExtendedHandle which allows the "maybe more data to read" between interfaces
- Deprecate RecvByteBufAllocator and change all existing implementations to extend ExtendedRecvByteBufAllocator
- transport-native-epoll should require ExtendedRecvByteBufAllocator so the "maybe more data to read" can be propagated to the ExtendedHandle
Result:
Fixes https://github.com/netty/netty/issues/6303.
Motivation:
Result of validatePromise() is always inverted with if (!validatePromise()).
Modification:
validatePromise() renamed to isNotValidPromise() and now returns inverted state so you don't need to invert state in conditions. Also name is now more meaningful according to returned result.
Added more tests for validatePromise corner cases with Exceptions.
Result:
Code easier to read. No need in inverted result.
Motivation:
We used various mocking frameworks. We should only use one...
Modifications:
Make usage of mocking framework consistent by only using Mockito.
Result:
Less dependencies and more consistent mocking usage.
Motivation:
NioDatagramChannel fails a write with NotYetConnectedException when the DatagramChannel was not yet connected and a ByteBuf is written. The same should be done for OioDatagramChannel as well.
Modifications:
Make OioDatagramChannel consistent with NioDatagramChannel
Result:
Correct and consistent implementations of DatagramChannel
Motivation:
Currently Netty does not wrap socket connect, bind, or accept
operations in doPrivileged blocks. Nor does it wrap cases where a dns
lookup might happen.
This prevents an application utilizing the SecurityManager from
isolating SocketPermissions to Netty.
Modifications:
I have introduced a class (SocketUtils) that wraps operations
requiring SocketPermissions in doPrivileged blocks.
Result:
A user of Netty can grant SocketPermissions explicitly to the Netty
jar, without granting it to the rest of their application.
Motivation:
https://github.com/netty/netty/pull/6042 only addressed PlatformDependent#getSystemClassLoader but getClassLoader is also called in an optional manner in some common code paths but fails to catch a general enough exception to continue working.
Modifications:
- Calls to getClassLoader which can continue if results fail should catch Throwable
Result:
More resilient code in the presense of restrictive class loaders.
Fixes https://github.com/netty/netty/issues/6246.
Motivation:
We not warned about not-supported ChannelOptions when set the options for the ServerChannel.
Modifications:
- Share code for setting ChannelOptions during bootstrap
Result:
Warning is logged when a ChannelOption is used that is not supported during bootstrap a Channel. See also [#6192]
Motivation:
The comment on AbstractChannelHandlerContext.invokeHandler() is incorrect and missleading. See [#6177]
Modifications:
Change true to false to correct the comment.
Result:
Fix missleading and incorrect comment.
Motivation:
`SimpleChannelPool` subclasses are likely to override the `connectChannel` method, and are likely to clobber the cloned `Bootstrap` handler in the process. To allow subclasses to properly notify the pool listener of new connections, we should expose (at least) the `handler` property of the pool to subclasses.
Modifications:
Expose `SimpleChannelPool` properties to subclasses via `protected` getters.
Result:
Subclasses can now use the bootstrap, handler, health checker, and health-check-on-release preoperties from their superclass.
Motivation:
DefaultChannelId provides a regular expression which validates if a user provided MAC address is valid. This regular expression may allow invalid MAC addresses and also not allow valid MAC addresses.
Modifications:
- Introduce a MacAddressUtil#parseMac method which can parse and validate the MAC address at the same time. The regular expression check before hand is additional overhead if we have to parse the MAC address.
Result:
Fixes https://github.com/netty/netty/issues/6132.
Motivation:
On some platforms the PID my be bigger then 4194304 so we should not limit it to 4194304.
Modifications:
Only check that the PID is a valid Integer
Result:
No more warnings on systems where the PID is bigger then 4194304.
Motivation:
In later Java8 versions our Atomic*FieldUpdater are slower then the JDK implementations so we should not use ours anymore. Even worse the JDK implementations provide for example an optimized version of addAndGet(...) using intrinsics which makes it a lot faster for this use-case.
Modifications:
- Remove methods that return our own Atomic*FieldUpdaters.
- Use the JDK implementations everywhere.
Result:
Faster code.
Motivation:
e102a008b6 changed a conditional where previously the NIO ServerChannel would not be closed in the event of an exception.
Modifications:
- Restore the logic prior to e102a008b6 which does not automatically close ServerChannels for IOExceptions
Result:
NIO ServerChannel doesn't close automatically for an IOException.
Motivation:
We should not catch ConcurrentModificationException as this can never happen because things are executed on the EventLoop thread.
Modifications:
Remove try / catch
Result:
Cleaner code.
Modifications:
LocalChannel#releaseInboundBuffers should always clear/release the queue and set readInProgress to false
Result:
LocalChannel queue is more reliably cleaned up.
Motivation:
LocalChannel attempts to close its peer socket when ever it is closed. However if the channels are on different EventLoops we may attempt to process events for the peer channel on the wrong EventLoop.
Modifications:
- Ensure the close process ensures we are on the correct thread before accessing data
Result:
More correct LocalChannel close code.
Motivation:
PlatformDependent#getSystemClassLoader may throw a wide variety of exceptions based upon the environment. We should handle all exceptions and continue initializing the slow path if an exception occurs.
Modifications:
- Catch Throwable in cases where PlatformDependent#getSystemClassLoader is used
Result:
Fixes https://github.com/netty/netty/issues/6038
Motivation:
Netty provides a adaptor from ByteBuf to Java's InputStream interface. The JDK Stream interfaces have an explicit lifetime because they implement the Closable interface. This lifetime may be differnt than the ByteBuf which is wrapped, and controlled by the interface which accepts the JDK Stream. However Netty's ByteBufInputStream currently does not take reference count ownership of the underlying ByteBuf. There may be no way for existing classes which only accept the InputStream interface to communicate when they are done with the stream, other than calling close(). This means that when the stream is closed it may be appropriate to release the underlying ByteBuf, as the ownership of the underlying ByteBuf resource may be transferred to the Java Stream.
Motivation:
- ByteBufInputStream.close() supports taking reference count ownership of the underyling ByteBuf
Result:
ByteBufInputStream can assume reference count ownership so the underlying ByteBuf can be cleaned up when the stream is closed.
Motivation:
To guard against the case that a user will enqueue a lot of empty or small buffers and so raise an OOME we need to also take the overhead of the ChannelOutboundBuffer / PendingWriteQueue into account when detect if a Channel is writable or not. This is related to #5856.
Modifications:
When calculate the memory for an message that is enqueued also add some extra bytes depending on the implementation.
Result:
Better guard against OOME.
Motivation
It's possible to extend LocalChannel as well as LocalServerChannel but the LocalServerChannel's serve(peer) method is hardcoded to create only instances of LocalChannel.
Modifications
Add a protected factory method that returns by default new LocalChannel(...) but users may override it to customize it.
Result
It's possible to customize the LocalChannel instance on either end of the virtual connection.
Motivation:
Some unit tests in SingleThreadEventLoopTest rely upon Thread.sleep for sequencing events between threads. This can be unreliable and result in spurious test failures if thread scheduling does not occur in a fair predictable manner.
Modifications:
- Reduce the reliance on Thread.sleep in SingleThreadEventLoopTest
Result:
Fixes https://github.com/netty/netty/issues/5851
Motivation:
The local transport is used to communicate in the same JVM so we should use heap buffers.
Modifications:
Use heapbuffers by default if not requested otherwise.
Result:
No allocating of direct buffers by default when using local transport
Motivation:
When using java.nio.DatagramChannel we should not close the channel when a SocketException was thrown as we can still use the channel.
Modifications:
Not close the Channel when SocketException is thrown
Result:
More robust and correct handling of exceptions when using NioDatagramChannel.
Motivation:
If an exception is thrown while processing the ready channels in the EventLoop we should still run all tasks as this may allow to recover. For example a OutOfMemoryError may be thrown and runAllTasks() will free up memory again. Beside this we should also ensure we always allow to shutdown even if an exception was thrown.
Modifications:
- Call runAllTasks() in a finally block
- Ensure shutdown is always handles.
Result:
More robust EventLoop implementations for NIO and Epoll.
Motivation:
We should better first process OP_WRITE before OP_READ as this may allow us to free memory in a faster fashion for previous queued writes.
Modifications:
Process OP_WRITE before OP_READ
Result:
Free memory faster for queued writes.
Motivation:
the build doesnt seem to enforce this, so they piled up
Modifications:
removed unused import lines
Result:
less unused imports
Signed-off-by: radai-rosenblatt <radai.rosenblatt@gmail.com>
the implicit #fireChannelReadComplete() in EmbeddedChannel#writeInbound().
Motivation
We use EmbeddedChannels to implement a ProxyChannel of some sorts that shovels
messages between a source and a destination Channel. The latter are real network
channels (such as Epoll) and they may or may not be managed in a ChannelPool. We
could fuse both ends directly together but the EmbeddedChannel provides a nice
disposable section of a ChannelPipeline that can be used to instrument the messages
that are passing through the proxy portion.
The ideal flow looks abount like this:
source#channelRead() -> proxy#writeOutbound() -> destination#write()
source#channelReadComplete() -> proxy#flushOutbound() -> destination#flush()
destination#channelRead() -> proxy#writeInbound() -> source#write()
destination#channelReadComplete() -> proxy#flushInbound() -> source#flush()
The problem is that #writeOutbound() and #writeInbound() emit surplus #flush()
and #fireChannelReadComplete() events which in turn yield to surplus #flush()
calls on both ends of the pipeline.
Modifications
Introduce a new set of write methods that reain the same sematics as the #write()
method and #flushOutbound() and #flushInbound().
Result
It's possible to implement the above ideal flow.
Fix for EmbeddedChannel#ensureOpen() and Unit Tests for it
Some PR stuff.
Motivation:
To make it easier to debug why notification of a promise failed we should log extra info and make it consistent.
Modifications:
- Create a new PromiseNotificationUtil that has static methods that can be used to try notify a promise and log.
- Reuse this in AbstractChannelHandlerContext, ChannelOutboundBuffer and PromiseNotifier
Result:
Easier to debug why a promise could not be notified.
Motivation:
RFC7871 defines an extension which allows to request responses for a given subset.
Modifications:
- Add DnsOptPseudoRrRecord which can act as base class for extensions based on EDNS(0) as defined in RFC6891
- Add DnsOptEcsRecord to support the Client Subnet in DNS Queries extension
- Add tests
Result:
Client Subnet in DNS Queries extension is now supported.
Motivation:
For use cases that demand frequent updates of the write watermarks, an
API that requires immutable WriteWaterMark objects is not ideal, as it
implies a lot of object allocation.
For example, the HTTP/2 child channel API uses write watermarks for outbound
flow control and updates the write watermarks on every DATA frame write.
Modifications:
Remote @Deprecated tag from primitive getters and setters, however the corresponding
channel options remain deprecated.
Result:
Primitive getters and setters for write watermarks are no longer marked @Deprecated.
Motivation:
The JDK implementation of SocketChannel has an internal state that is tracked for its operations. Because of this we need to ensure we call finishConnect() before try to call read(...) / write(...) as otherwise it may produce a NotYetConnectedException.
Modifications:
First process OP_CONNECT flag.
Result:
No more possibility of NotYetConnectedException because OP_CONNECT is handled not early enough when processing interestedOps for a Channel.
Motivation:
The DefaultEventLoopGroup class extends MultithreadEventExecutorGroup but doesn't expose the ctor variants that accept a custom Executor like NioEventLoopGroup and EpollEventLoopGroup do.
Modifications:
Add missing constructor.
Result:
Be able to use custom Executor with DefaultEventLoopGroup.
Motivation:
When attempting to set the selectedKeys fields on the selector
implementation, JDK 9 can throw an inaccessible object exception.
Modications:
Catch and log this exception as an possible course of action if the
sun.nio.ch package is not exported from java.base.
Result:
The selector replacement will fail gracefully as an expected course of
action if the sun.nio.ch package is not exported from java.base.