rocksdb/db/dbformat.h

312 lines
10 KiB
C
Raw Normal View History

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#include <stdio.h>
#include "rocksdb/comparator.h"
#include "rocksdb/db.h"
#include "rocksdb/filter_policy.h"
#include "rocksdb/slice.h"
#include "rocksdb/table.h"
#include "rocksdb/types.h"
#include "util/coding.h"
#include "util/logging.h"
namespace rocksdb {
class InternalKey;
// Value types encoded as the last component of internal keys.
// DO NOT CHANGE THESE ENUM VALUES: they are embedded in the on-disk
// data structures.
// The highest bit of the value type needs to be reserved to SST tables
// for them to do more flexible encoding.
enum ValueType : unsigned char {
kTypeDeletion = 0x0,
kTypeValue = 0x1,
kTypeMerge = 0x2,
kTypeLogData = 0x3,
kTypeColumnFamilyDeletion = 0x4,
kTypeColumnFamilyValue = 0x5,
kTypeColumnFamilyMerge = 0x6,
kMaxValue = 0x7F
};
// kValueTypeForSeek defines the ValueType that should be passed when
// constructing a ParsedInternalKey object for seeking to a particular
// sequence number (since we sort sequence numbers in decreasing order
// and the value type is embedded as the low 8 bits in the sequence
// number in internal keys, we need to use the highest-numbered
// ValueType, not the lowest).
static const ValueType kValueTypeForSeek = kTypeMerge;
// We leave eight bits empty at the bottom so a type and sequence#
// can be packed together into 64-bits.
static const SequenceNumber kMaxSequenceNumber =
((0x1ull << 56) - 1);
struct ParsedInternalKey {
Slice user_key;
SequenceNumber sequence;
ValueType type;
ParsedInternalKey() { } // Intentionally left uninitialized (for speed)
ParsedInternalKey(const Slice& u, const SequenceNumber& seq, ValueType t)
: user_key(u), sequence(seq), type(t) { }
std::string DebugString(bool hex = false) const;
};
// Return the length of the encoding of "key".
inline size_t InternalKeyEncodingLength(const ParsedInternalKey& key) {
return key.user_key.size() + 8;
}
extern uint64_t PackSequenceAndType(uint64_t seq, ValueType t);
// Append the serialization of "key" to *result.
extern void AppendInternalKey(std::string* result,
const ParsedInternalKey& key);
// Attempt to parse an internal key from "internal_key". On success,
// stores the parsed data in "*result", and returns true.
//
// On error, returns false, leaves "*result" in an undefined state.
extern bool ParseInternalKey(const Slice& internal_key,
ParsedInternalKey* result);
// Returns the user key portion of an internal key.
inline Slice ExtractUserKey(const Slice& internal_key) {
assert(internal_key.size() >= 8);
return Slice(internal_key.data(), internal_key.size() - 8);
}
inline ValueType ExtractValueType(const Slice& internal_key) {
assert(internal_key.size() >= 8);
const size_t n = internal_key.size();
uint64_t num = DecodeFixed64(internal_key.data() + n - 8);
unsigned char c = num & 0xff;
return static_cast<ValueType>(c);
}
// A comparator for internal keys that uses a specified comparator for
// the user key portion and breaks ties by decreasing sequence number.
class InternalKeyComparator : public Comparator {
private:
const Comparator* user_comparator_;
std::string name_;
public:
explicit InternalKeyComparator(const Comparator* c) : user_comparator_(c),
name_("rocksdb.InternalKeyComparator:" +
std::string(user_comparator_->Name())) {
}
virtual ~InternalKeyComparator() {}
virtual const char* Name() const;
virtual int Compare(const Slice& a, const Slice& b) const;
virtual void FindShortestSeparator(
std::string* start,
const Slice& limit) const;
virtual void FindShortSuccessor(std::string* key) const;
const Comparator* user_comparator() const { return user_comparator_; }
int Compare(const InternalKey& a, const InternalKey& b) const;
int Compare(const ParsedInternalKey& a, const ParsedInternalKey& b) const;
};
// Filter policy wrapper that converts from internal keys to user keys
class InternalFilterPolicy : public FilterPolicy {
private:
const FilterPolicy* const user_policy_;
public:
explicit InternalFilterPolicy(const FilterPolicy* p) : user_policy_(p) { }
virtual const char* Name() const;
virtual void CreateFilter(const Slice* keys, int n, std::string* dst) const;
virtual bool KeyMayMatch(const Slice& key, const Slice& filter) const;
};
// Modules in this directory should keep internal keys wrapped inside
// the following class instead of plain strings so that we do not
// incorrectly use string comparisons instead of an InternalKeyComparator.
class InternalKey {
private:
std::string rep_;
public:
InternalKey() { } // Leave rep_ as empty to indicate it is invalid
InternalKey(const Slice& user_key, SequenceNumber s, ValueType t) {
AppendInternalKey(&rep_, ParsedInternalKey(user_key, s, t));
}
void DecodeFrom(const Slice& s) { rep_.assign(s.data(), s.size()); }
Slice Encode() const {
assert(!rep_.empty());
return rep_;
}
Slice user_key() const { return ExtractUserKey(rep_); }
void SetFrom(const ParsedInternalKey& p) {
rep_.clear();
AppendInternalKey(&rep_, p);
}
void Clear() { rep_.clear(); }
std::string DebugString(bool hex = false) const;
};
inline int InternalKeyComparator::Compare(
const InternalKey& a, const InternalKey& b) const {
return Compare(a.Encode(), b.Encode());
}
inline bool ParseInternalKey(const Slice& internal_key,
ParsedInternalKey* result) {
const size_t n = internal_key.size();
if (n < 8) return false;
uint64_t num = DecodeFixed64(internal_key.data() + n - 8);
unsigned char c = num & 0xff;
result->sequence = num >> 8;
result->type = static_cast<ValueType>(c);
assert(result->type <= ValueType::kMaxValue);
result->user_key = Slice(internal_key.data(), n - 8);
return (c <= static_cast<unsigned char>(kValueTypeForSeek));
}
// Update the sequence number in the internal key
inline void UpdateInternalKey(char* internal_key,
const size_t internal_key_size,
uint64_t seq, ValueType t) {
assert(internal_key_size >= 8);
char* seqtype = internal_key + internal_key_size - 8;
uint64_t newval = (seq << 8) | t;
EncodeFixed64(seqtype, newval);
}
// Get the sequence number from the internal key
inline uint64_t GetInternalKeySeqno(const Slice& internal_key) {
const size_t n = internal_key.size();
assert(n >= 8);
uint64_t num = DecodeFixed64(internal_key.data() + n - 8);
return num >> 8;
}
// A helper class useful for DBImpl::Get()
class LookupKey {
public:
// Initialize *this for looking up user_key at a snapshot with
// the specified sequence number.
LookupKey(const Slice& user_key, SequenceNumber sequence);
~LookupKey();
// Return a key suitable for lookup in a MemTable.
Slice memtable_key() const { return Slice(start_, end_ - start_); }
// Return an internal key (suitable for passing to an internal iterator)
Slice internal_key() const { return Slice(kstart_, end_ - kstart_); }
// Return the user key
Slice user_key() const { return Slice(kstart_, end_ - kstart_ - 8); }
private:
// We construct a char array of the form:
// klength varint32 <-- start_
// userkey char[klength] <-- kstart_
// tag uint64
// <-- end_
// The array is a suitable MemTable key.
// The suffix starting with "userkey" can be used as an InternalKey.
const char* start_;
const char* kstart_;
const char* end_;
char space_[200]; // Avoid allocation for short keys
// No copying allowed
LookupKey(const LookupKey&);
void operator=(const LookupKey&);
};
inline LookupKey::~LookupKey() {
if (start_ != space_) delete[] start_;
}
class IterKey {
public:
IterKey() : key_(space_), buf_size_(sizeof(space_)), key_size_(0) {}
~IterKey() { Clear(); }
Slice GetKey() const {
if (key_ != nullptr) {
return Slice(key_, key_size_);
} else {
return Slice();
}
}
bool Valid() const { return key_ != nullptr; }
void Clear() {
if (key_ != nullptr && key_ != space_) {
delete[] key_;
}
key_ = space_;
buf_size_ = sizeof(buf_size_);
}
// Enlarge the buffer size if needed based on key_size.
// By default, static allocated buffer is used. Once there is a key
// larger than the static allocated buffer, another buffer is dynamically
// allocated, until a larger key buffer is requested. In that case, we
// reallocate buffer and delete the old one.
void EnlargeBufferIfNeeded(size_t key_size) {
// If size is smaller than buffer size, continue using current buffer,
// or the static allocated one, as default
if (key_size > buf_size_) {
// Need to enlarge the buffer.
Clear();
key_ = new char[key_size];
buf_size_ = key_size;
}
key_size_ = key_size;
}
void SetUserKey(const Slice& user_key) {
size_t size = user_key.size();
EnlargeBufferIfNeeded(size);
memcpy(key_, user_key.data(), size);
}
void SetInternalKey(const Slice& user_key, SequenceNumber s,
ValueType value_type = kValueTypeForSeek) {
size_t usize = user_key.size();
EnlargeBufferIfNeeded(usize + sizeof(uint64_t));
memcpy(key_, user_key.data(), usize);
EncodeFixed64(key_ + usize, PackSequenceAndType(s, value_type));
}
void SetInternalKey(const ParsedInternalKey& parsed_key) {
SetInternalKey(parsed_key.user_key, parsed_key.sequence, parsed_key.type);
}
private:
char* key_;
size_t buf_size_;
size_t key_size_;
char space_[32]; // Avoid allocation for short keys
// No copying allowed
IterKey(const IterKey&) = delete;
void operator=(const IterKey&) = delete;
};
} // namespace rocksdb