rocksdb/db/compaction/compaction_picker_test.cc

1738 lines
68 KiB
C++
Raw Normal View History

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include <limits>
#include <string>
#include <utility>
#include "db/compaction/compaction.h"
#include "db/compaction/compaction_picker_fifo.h"
#include "db/compaction/compaction_picker_level.h"
#include "db/compaction/compaction_picker_universal.h"
#include "logging/logging.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
#include "util/string_util.h"
namespace rocksdb {
class CountingLogger : public Logger {
public:
2015-02-01 20:08:19 +01:00
using Logger::Logv;
void Logv(const char* /*format*/, va_list /*ap*/) override { log_count++; }
size_t log_count;
};
rocksdb: switch to gtest Summary: Our existing test notation is very similar to what is used in gtest. It makes it easy to adopt what is different. In this diff I modify existing [[ https://code.google.com/p/googletest/wiki/Primer#Test_Fixtures:_Using_the_Same_Data_Configuration_for_Multiple_Te | test fixture ]] classes to inherit from `testing::Test`. Also for unit tests that use fixture class, `TEST` is replaced with `TEST_F` as required in gtest. There are several custom `main` functions in our existing tests. To make this transition easier, I modify all `main` functions to fallow gtest notation. But eventually we can remove them and use implementation of `main` that gtest provides. ```lang=bash % cat ~/transform #!/bin/sh files=$(git ls-files '*test\.cc') for file in $files do if grep -q "rocksdb::test::RunAllTests()" $file then if grep -Eq '^class \w+Test {' $file then perl -pi -e 's/^(class \w+Test) {/${1}: public testing::Test {/g' $file perl -pi -e 's/^(TEST)/${1}_F/g' $file fi perl -pi -e 's/(int main.*\{)/${1}::testing::InitGoogleTest(&argc, argv);/g' $file perl -pi -e 's/rocksdb::test::RunAllTests/RUN_ALL_TESTS/g' $file fi done % sh ~/transform % make format ``` Second iteration of this diff contains only scripted changes. Third iteration contains manual changes to fix last errors and make it compilable. Test Plan: Build and notice no errors. ```lang=bash % USE_CLANG=1 make check -j55 ``` Tests are still testing. Reviewers: meyering, sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D35157
2015-03-17 22:08:00 +01:00
class CompactionPickerTest : public testing::Test {
public:
const Comparator* ucmp_;
InternalKeyComparator icmp_;
Options options_;
ImmutableCFOptions ioptions_;
MutableCFOptions mutable_cf_options_;
LevelCompactionPicker level_compaction_picker;
std::string cf_name_;
CountingLogger logger_;
LogBuffer log_buffer_;
uint32_t file_num_;
CompactionOptionsFIFO fifo_options_;
std::unique_ptr<VersionStorageInfo> vstorage_;
std::vector<std::unique_ptr<FileMetaData>> files_;
// does not own FileMetaData
std::unordered_map<uint32_t, std::pair<FileMetaData*, int>> file_map_;
// input files to compaction process.
std::vector<CompactionInputFiles> input_files_;
int compaction_level_start_;
CompactionPickerTest()
: ucmp_(BytewiseComparator()),
icmp_(ucmp_),
ioptions_(options_),
mutable_cf_options_(options_),
level_compaction_picker(ioptions_, &icmp_),
cf_name_("dummy"),
log_buffer_(InfoLogLevel::INFO_LEVEL, &logger_),
file_num_(1),
vstorage_(nullptr) {
// ioptions_.compaction_pri = kMinOverlappingRatio has its own set of
// tests to cover.
ioptions_.compaction_pri = kByCompensatedSize;
fifo_options_.max_table_files_size = 1;
mutable_cf_options_.RefreshDerivedOptions(ioptions_);
ioptions_.cf_paths.emplace_back("dummy",
std::numeric_limits<uint64_t>::max());
}
~CompactionPickerTest() override {}
void NewVersionStorage(int num_levels, CompactionStyle style) {
DeleteVersionStorage();
options_.num_levels = num_levels;
vstorage_.reset(new VersionStorageInfo(&icmp_, ucmp_, options_.num_levels,
style, nullptr, false));
vstorage_->CalculateBaseBytes(ioptions_, mutable_cf_options_);
}
void DeleteVersionStorage() {
vstorage_.reset();
files_.clear();
file_map_.clear();
input_files_.clear();
}
void Add(int level, uint32_t file_number, const char* smallest,
const char* largest, uint64_t file_size = 1, uint32_t path_id = 0,
SequenceNumber smallest_seq = 100, SequenceNumber largest_seq = 100,
size_t compensated_file_size = 0) {
assert(level < vstorage_->num_levels());
FileMetaData* f = new FileMetaData(
file_number, path_id, file_size,
InternalKey(smallest, smallest_seq, kTypeValue),
InternalKey(largest, largest_seq, kTypeValue), smallest_seq,
largest_seq, /* marked_for_compact */ false, kInvalidBlobFileNumber);
f->compensated_file_size =
(compensated_file_size != 0) ? compensated_file_size : file_size;
vstorage_->AddFile(level, f);
files_.emplace_back(f);
file_map_.insert({file_number, {f, level}});
}
void SetCompactionInputFilesLevels(int level_count, int start_level) {
input_files_.resize(level_count);
for (int i = 0; i < level_count; ++i) {
input_files_[i].level = start_level + i;
}
compaction_level_start_ = start_level;
}
void AddToCompactionFiles(uint32_t file_number) {
auto iter = file_map_.find(file_number);
assert(iter != file_map_.end());
int level = iter->second.second;
assert(level < vstorage_->num_levels());
input_files_[level - compaction_level_start_].files.emplace_back(
iter->second.first);
}
void UpdateVersionStorageInfo() {
vstorage_->CalculateBaseBytes(ioptions_, mutable_cf_options_);
vstorage_->UpdateFilesByCompactionPri(ioptions_.compaction_pri);
vstorage_->UpdateNumNonEmptyLevels();
vstorage_->GenerateFileIndexer();
vstorage_->GenerateLevelFilesBrief();
vstorage_->ComputeCompactionScore(ioptions_, mutable_cf_options_);
Allowing L0 -> L1 trivial move on sorted data Summary: This diff updates the logic of how we do trivial move, now trivial move can run on any number of files in input level as long as they are not overlapping The conditions for trivial move have been updated Introduced conditions: - Trivial move cannot happen if we have a compaction filter (except if the compaction is not manual) - Input level files cannot be overlapping Removed conditions: - Trivial move only run when the compaction is not manual - Input level should can contain only 1 file More context on what tests failed because of Trivial move ``` DBTest.CompactionsGenerateMultipleFiles This test is expecting compaction on a file in L0 to generate multiple files in L1, this test will fail with trivial move because we end up with one file in L1 ``` ``` DBTest.NoSpaceCompactRange This test expect compaction to fail when we force environment to report running out of space, of course this is not valid in trivial move situation because trivial move does not need any extra space, and did not check for that ``` ``` DBTest.DropWrites Similar to DBTest.NoSpaceCompactRange ``` ``` DBTest.DeleteObsoleteFilesPendingOutputs This test expect that a file in L2 is deleted after it's moved to L3, this is not valid with trivial move because although the file was moved it is now used by L3 ``` ``` CuckooTableDBTest.CompactionIntoMultipleFiles Same as DBTest.CompactionsGenerateMultipleFiles ``` This diff is based on a work by @sdong https://reviews.facebook.net/D34149 Test Plan: make -j64 check Reviewers: rven, sdong, igor Reviewed By: igor Subscribers: yhchiang, ott, march, dhruba, sdong Differential Revision: https://reviews.facebook.net/D34797
2015-06-05 01:51:25 +02:00
vstorage_->GenerateLevel0NonOverlapping();
vstorage_->ComputeFilesMarkedForCompaction();
vstorage_->SetFinalized();
}
};
rocksdb: switch to gtest Summary: Our existing test notation is very similar to what is used in gtest. It makes it easy to adopt what is different. In this diff I modify existing [[ https://code.google.com/p/googletest/wiki/Primer#Test_Fixtures:_Using_the_Same_Data_Configuration_for_Multiple_Te | test fixture ]] classes to inherit from `testing::Test`. Also for unit tests that use fixture class, `TEST` is replaced with `TEST_F` as required in gtest. There are several custom `main` functions in our existing tests. To make this transition easier, I modify all `main` functions to fallow gtest notation. But eventually we can remove them and use implementation of `main` that gtest provides. ```lang=bash % cat ~/transform #!/bin/sh files=$(git ls-files '*test\.cc') for file in $files do if grep -q "rocksdb::test::RunAllTests()" $file then if grep -Eq '^class \w+Test {' $file then perl -pi -e 's/^(class \w+Test) {/${1}: public testing::Test {/g' $file perl -pi -e 's/^(TEST)/${1}_F/g' $file fi perl -pi -e 's/(int main.*\{)/${1}::testing::InitGoogleTest(&argc, argv);/g' $file perl -pi -e 's/rocksdb::test::RunAllTests/RUN_ALL_TESTS/g' $file fi done % sh ~/transform % make format ``` Second iteration of this diff contains only scripted changes. Third iteration contains manual changes to fix last errors and make it compilable. Test Plan: Build and notice no errors. ```lang=bash % USE_CLANG=1 make check -j55 ``` Tests are still testing. Reviewers: meyering, sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D35157
2015-03-17 22:08:00 +01:00
TEST_F(CompactionPickerTest, Empty) {
NewVersionStorage(6, kCompactionStyleLevel);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() == nullptr);
}
rocksdb: switch to gtest Summary: Our existing test notation is very similar to what is used in gtest. It makes it easy to adopt what is different. In this diff I modify existing [[ https://code.google.com/p/googletest/wiki/Primer#Test_Fixtures:_Using_the_Same_Data_Configuration_for_Multiple_Te | test fixture ]] classes to inherit from `testing::Test`. Also for unit tests that use fixture class, `TEST` is replaced with `TEST_F` as required in gtest. There are several custom `main` functions in our existing tests. To make this transition easier, I modify all `main` functions to fallow gtest notation. But eventually we can remove them and use implementation of `main` that gtest provides. ```lang=bash % cat ~/transform #!/bin/sh files=$(git ls-files '*test\.cc') for file in $files do if grep -q "rocksdb::test::RunAllTests()" $file then if grep -Eq '^class \w+Test {' $file then perl -pi -e 's/^(class \w+Test) {/${1}: public testing::Test {/g' $file perl -pi -e 's/^(TEST)/${1}_F/g' $file fi perl -pi -e 's/(int main.*\{)/${1}::testing::InitGoogleTest(&argc, argv);/g' $file perl -pi -e 's/rocksdb::test::RunAllTests/RUN_ALL_TESTS/g' $file fi done % sh ~/transform % make format ``` Second iteration of this diff contains only scripted changes. Third iteration contains manual changes to fix last errors and make it compilable. Test Plan: Build and notice no errors. ```lang=bash % USE_CLANG=1 make check -j55 ``` Tests are still testing. Reviewers: meyering, sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D35157
2015-03-17 22:08:00 +01:00
TEST_F(CompactionPickerTest, Single) {
NewVersionStorage(6, kCompactionStyleLevel);
mutable_cf_options_.level0_file_num_compaction_trigger = 2;
Add(0, 1U, "p", "q");
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() == nullptr);
}
rocksdb: switch to gtest Summary: Our existing test notation is very similar to what is used in gtest. It makes it easy to adopt what is different. In this diff I modify existing [[ https://code.google.com/p/googletest/wiki/Primer#Test_Fixtures:_Using_the_Same_Data_Configuration_for_Multiple_Te | test fixture ]] classes to inherit from `testing::Test`. Also for unit tests that use fixture class, `TEST` is replaced with `TEST_F` as required in gtest. There are several custom `main` functions in our existing tests. To make this transition easier, I modify all `main` functions to fallow gtest notation. But eventually we can remove them and use implementation of `main` that gtest provides. ```lang=bash % cat ~/transform #!/bin/sh files=$(git ls-files '*test\.cc') for file in $files do if grep -q "rocksdb::test::RunAllTests()" $file then if grep -Eq '^class \w+Test {' $file then perl -pi -e 's/^(class \w+Test) {/${1}: public testing::Test {/g' $file perl -pi -e 's/^(TEST)/${1}_F/g' $file fi perl -pi -e 's/(int main.*\{)/${1}::testing::InitGoogleTest(&argc, argv);/g' $file perl -pi -e 's/rocksdb::test::RunAllTests/RUN_ALL_TESTS/g' $file fi done % sh ~/transform % make format ``` Second iteration of this diff contains only scripted changes. Third iteration contains manual changes to fix last errors and make it compilable. Test Plan: Build and notice no errors. ```lang=bash % USE_CLANG=1 make check -j55 ``` Tests are still testing. Reviewers: meyering, sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D35157
2015-03-17 22:08:00 +01:00
TEST_F(CompactionPickerTest, Level0Trigger) {
NewVersionStorage(6, kCompactionStyleLevel);
mutable_cf_options_.level0_file_num_compaction_trigger = 2;
Add(0, 1U, "150", "200");
Add(0, 2U, "200", "250");
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(2U, compaction->num_input_files(0));
ASSERT_EQ(1U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(2U, compaction->input(0, 1)->fd.GetNumber());
}
rocksdb: switch to gtest Summary: Our existing test notation is very similar to what is used in gtest. It makes it easy to adopt what is different. In this diff I modify existing [[ https://code.google.com/p/googletest/wiki/Primer#Test_Fixtures:_Using_the_Same_Data_Configuration_for_Multiple_Te | test fixture ]] classes to inherit from `testing::Test`. Also for unit tests that use fixture class, `TEST` is replaced with `TEST_F` as required in gtest. There are several custom `main` functions in our existing tests. To make this transition easier, I modify all `main` functions to fallow gtest notation. But eventually we can remove them and use implementation of `main` that gtest provides. ```lang=bash % cat ~/transform #!/bin/sh files=$(git ls-files '*test\.cc') for file in $files do if grep -q "rocksdb::test::RunAllTests()" $file then if grep -Eq '^class \w+Test {' $file then perl -pi -e 's/^(class \w+Test) {/${1}: public testing::Test {/g' $file perl -pi -e 's/^(TEST)/${1}_F/g' $file fi perl -pi -e 's/(int main.*\{)/${1}::testing::InitGoogleTest(&argc, argv);/g' $file perl -pi -e 's/rocksdb::test::RunAllTests/RUN_ALL_TESTS/g' $file fi done % sh ~/transform % make format ``` Second iteration of this diff contains only scripted changes. Third iteration contains manual changes to fix last errors and make it compilable. Test Plan: Build and notice no errors. ```lang=bash % USE_CLANG=1 make check -j55 ``` Tests are still testing. Reviewers: meyering, sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D35157
2015-03-17 22:08:00 +01:00
TEST_F(CompactionPickerTest, Level1Trigger) {
NewVersionStorage(6, kCompactionStyleLevel);
Add(1, 66U, "150", "200", 1000000000U);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(1U, compaction->num_input_files(0));
ASSERT_EQ(66U, compaction->input(0, 0)->fd.GetNumber());
}
rocksdb: switch to gtest Summary: Our existing test notation is very similar to what is used in gtest. It makes it easy to adopt what is different. In this diff I modify existing [[ https://code.google.com/p/googletest/wiki/Primer#Test_Fixtures:_Using_the_Same_Data_Configuration_for_Multiple_Te | test fixture ]] classes to inherit from `testing::Test`. Also for unit tests that use fixture class, `TEST` is replaced with `TEST_F` as required in gtest. There are several custom `main` functions in our existing tests. To make this transition easier, I modify all `main` functions to fallow gtest notation. But eventually we can remove them and use implementation of `main` that gtest provides. ```lang=bash % cat ~/transform #!/bin/sh files=$(git ls-files '*test\.cc') for file in $files do if grep -q "rocksdb::test::RunAllTests()" $file then if grep -Eq '^class \w+Test {' $file then perl -pi -e 's/^(class \w+Test) {/${1}: public testing::Test {/g' $file perl -pi -e 's/^(TEST)/${1}_F/g' $file fi perl -pi -e 's/(int main.*\{)/${1}::testing::InitGoogleTest(&argc, argv);/g' $file perl -pi -e 's/rocksdb::test::RunAllTests/RUN_ALL_TESTS/g' $file fi done % sh ~/transform % make format ``` Second iteration of this diff contains only scripted changes. Third iteration contains manual changes to fix last errors and make it compilable. Test Plan: Build and notice no errors. ```lang=bash % USE_CLANG=1 make check -j55 ``` Tests are still testing. Reviewers: meyering, sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D35157
2015-03-17 22:08:00 +01:00
TEST_F(CompactionPickerTest, Level1Trigger2) {
mutable_cf_options_.target_file_size_base = 10000000000;
mutable_cf_options_.RefreshDerivedOptions(ioptions_);
NewVersionStorage(6, kCompactionStyleLevel);
Add(1, 66U, "150", "200", 1000000001U);
Add(1, 88U, "201", "300", 1000000000U);
Add(2, 6U, "150", "179", 1000000000U);
Add(2, 7U, "180", "220", 1000000000U);
Add(2, 8U, "221", "300", 1000000000U);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(1U, compaction->num_input_files(0));
ASSERT_EQ(2U, compaction->num_input_files(1));
ASSERT_EQ(66U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(6U, compaction->input(1, 0)->fd.GetNumber());
ASSERT_EQ(7U, compaction->input(1, 1)->fd.GetNumber());
ASSERT_EQ(uint64_t{1073741824}, compaction->OutputFilePreallocationSize());
}
rocksdb: switch to gtest Summary: Our existing test notation is very similar to what is used in gtest. It makes it easy to adopt what is different. In this diff I modify existing [[ https://code.google.com/p/googletest/wiki/Primer#Test_Fixtures:_Using_the_Same_Data_Configuration_for_Multiple_Te | test fixture ]] classes to inherit from `testing::Test`. Also for unit tests that use fixture class, `TEST` is replaced with `TEST_F` as required in gtest. There are several custom `main` functions in our existing tests. To make this transition easier, I modify all `main` functions to fallow gtest notation. But eventually we can remove them and use implementation of `main` that gtest provides. ```lang=bash % cat ~/transform #!/bin/sh files=$(git ls-files '*test\.cc') for file in $files do if grep -q "rocksdb::test::RunAllTests()" $file then if grep -Eq '^class \w+Test {' $file then perl -pi -e 's/^(class \w+Test) {/${1}: public testing::Test {/g' $file perl -pi -e 's/^(TEST)/${1}_F/g' $file fi perl -pi -e 's/(int main.*\{)/${1}::testing::InitGoogleTest(&argc, argv);/g' $file perl -pi -e 's/rocksdb::test::RunAllTests/RUN_ALL_TESTS/g' $file fi done % sh ~/transform % make format ``` Second iteration of this diff contains only scripted changes. Third iteration contains manual changes to fix last errors and make it compilable. Test Plan: Build and notice no errors. ```lang=bash % USE_CLANG=1 make check -j55 ``` Tests are still testing. Reviewers: meyering, sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D35157
2015-03-17 22:08:00 +01:00
TEST_F(CompactionPickerTest, LevelMaxScore) {
NewVersionStorage(6, kCompactionStyleLevel);
mutable_cf_options_.target_file_size_base = 10000000;
mutable_cf_options_.max_bytes_for_level_base = 10 * 1024 * 1024;
mutable_cf_options_.RefreshDerivedOptions(ioptions_);
Add(0, 1U, "150", "200", 1000000U);
// Level 1 score 1.2
Add(1, 66U, "150", "200", 6000000U);
Add(1, 88U, "201", "300", 6000000U);
// Level 2 score 1.8. File 7 is the largest. Should be picked
Add(2, 6U, "150", "179", 60000000U);
Add(2, 7U, "180", "220", 60000001U);
Add(2, 8U, "221", "300", 60000000U);
// Level 3 score slightly larger than 1
Add(3, 26U, "150", "170", 260000000U);
Add(3, 27U, "171", "179", 260000000U);
Add(3, 28U, "191", "220", 260000000U);
Add(3, 29U, "221", "300", 260000000U);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(1U, compaction->num_input_files(0));
ASSERT_EQ(7U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(mutable_cf_options_.target_file_size_base +
mutable_cf_options_.target_file_size_base / 10,
compaction->OutputFilePreallocationSize());
}
rocksdb: switch to gtest Summary: Our existing test notation is very similar to what is used in gtest. It makes it easy to adopt what is different. In this diff I modify existing [[ https://code.google.com/p/googletest/wiki/Primer#Test_Fixtures:_Using_the_Same_Data_Configuration_for_Multiple_Te | test fixture ]] classes to inherit from `testing::Test`. Also for unit tests that use fixture class, `TEST` is replaced with `TEST_F` as required in gtest. There are several custom `main` functions in our existing tests. To make this transition easier, I modify all `main` functions to fallow gtest notation. But eventually we can remove them and use implementation of `main` that gtest provides. ```lang=bash % cat ~/transform #!/bin/sh files=$(git ls-files '*test\.cc') for file in $files do if grep -q "rocksdb::test::RunAllTests()" $file then if grep -Eq '^class \w+Test {' $file then perl -pi -e 's/^(class \w+Test) {/${1}: public testing::Test {/g' $file perl -pi -e 's/^(TEST)/${1}_F/g' $file fi perl -pi -e 's/(int main.*\{)/${1}::testing::InitGoogleTest(&argc, argv);/g' $file perl -pi -e 's/rocksdb::test::RunAllTests/RUN_ALL_TESTS/g' $file fi done % sh ~/transform % make format ``` Second iteration of this diff contains only scripted changes. Third iteration contains manual changes to fix last errors and make it compilable. Test Plan: Build and notice no errors. ```lang=bash % USE_CLANG=1 make check -j55 ``` Tests are still testing. Reviewers: meyering, sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D35157
2015-03-17 22:08:00 +01:00
TEST_F(CompactionPickerTest, NeedsCompactionLevel) {
const int kLevels = 6;
const int kFileCount = 20;
for (int level = 0; level < kLevels - 1; ++level) {
NewVersionStorage(kLevels, kCompactionStyleLevel);
uint64_t file_size = vstorage_->MaxBytesForLevel(level) * 2 / kFileCount;
for (int file_count = 1; file_count <= kFileCount; ++file_count) {
// start a brand new version in each test.
NewVersionStorage(kLevels, kCompactionStyleLevel);
for (int i = 0; i < file_count; ++i) {
Add(level, i, ToString((i + 100) * 1000).c_str(),
ToString((i + 100) * 1000 + 999).c_str(),
file_size, 0, i * 100, i * 100 + 99);
}
UpdateVersionStorageInfo();
ASSERT_EQ(vstorage_->CompactionScoreLevel(0), level);
ASSERT_EQ(level_compaction_picker.NeedsCompaction(vstorage_.get()),
vstorage_->CompactionScore(0) >= 1);
// release the version storage
DeleteVersionStorage();
}
}
}
rocksdb: switch to gtest Summary: Our existing test notation is very similar to what is used in gtest. It makes it easy to adopt what is different. In this diff I modify existing [[ https://code.google.com/p/googletest/wiki/Primer#Test_Fixtures:_Using_the_Same_Data_Configuration_for_Multiple_Te | test fixture ]] classes to inherit from `testing::Test`. Also for unit tests that use fixture class, `TEST` is replaced with `TEST_F` as required in gtest. There are several custom `main` functions in our existing tests. To make this transition easier, I modify all `main` functions to fallow gtest notation. But eventually we can remove them and use implementation of `main` that gtest provides. ```lang=bash % cat ~/transform #!/bin/sh files=$(git ls-files '*test\.cc') for file in $files do if grep -q "rocksdb::test::RunAllTests()" $file then if grep -Eq '^class \w+Test {' $file then perl -pi -e 's/^(class \w+Test) {/${1}: public testing::Test {/g' $file perl -pi -e 's/^(TEST)/${1}_F/g' $file fi perl -pi -e 's/(int main.*\{)/${1}::testing::InitGoogleTest(&argc, argv);/g' $file perl -pi -e 's/rocksdb::test::RunAllTests/RUN_ALL_TESTS/g' $file fi done % sh ~/transform % make format ``` Second iteration of this diff contains only scripted changes. Third iteration contains manual changes to fix last errors and make it compilable. Test Plan: Build and notice no errors. ```lang=bash % USE_CLANG=1 make check -j55 ``` Tests are still testing. Reviewers: meyering, sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D35157
2015-03-17 22:08:00 +01:00
TEST_F(CompactionPickerTest, Level0TriggerDynamic) {
int num_levels = ioptions_.num_levels;
ioptions_.level_compaction_dynamic_level_bytes = true;
mutable_cf_options_.level0_file_num_compaction_trigger = 2;
mutable_cf_options_.max_bytes_for_level_base = 200;
mutable_cf_options_.max_bytes_for_level_multiplier = 10;
NewVersionStorage(num_levels, kCompactionStyleLevel);
Add(0, 1U, "150", "200");
Add(0, 2U, "200", "250");
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(2U, compaction->num_input_files(0));
ASSERT_EQ(1U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(2U, compaction->input(0, 1)->fd.GetNumber());
Make Compaction class easier to use Summary: The goal of this diff is to make Compaction class easier to use. This should also make new compaction algorithms easier to write (like CompactFiles from @yhchiang and dynamic leveled and multi-leveled universal from @sdong). Here are couple of things demonstrating that Compaction class is hard to use: 1. we have two constructors of Compaction class 2. there's this thing called grandparents_, but it appears to only be setup for leveled compaction and not compactfiles 3. it's easy to introduce a subtle and dangerous bug like this: D36225 4. SetupBottomMostLevel() is hard to understand and it shouldn't be. See this comment: https://github.com/facebook/rocksdb/blob/afbafeaeaebfd27a0f3e992fee8e0c57d07658fa/db/compaction.cc#L236-L241. It also made it harder for @yhchiang to write CompactFiles, as evidenced by this: https://github.com/facebook/rocksdb/blob/afbafeaeaebfd27a0f3e992fee8e0c57d07658fa/db/compaction_picker.cc#L204-L210 The problem is that we create Compaction object, which holds a lot of state, and then pass it around to some functions. After those functions are done mutating, then we call couple of functions on Compaction object, like SetupBottommostLevel() and MarkFilesBeingCompacted(). It is very hard to see what's happening with all that Compaction's state while it's travelling across different functions. If you're writing a new PickCompaction() function you need to try really hard to understand what are all the functions you need to run on Compaction object and what state you need to setup. My proposed solution is to make important parts of Compaction immutable after construction. PickCompaction() should calculate compaction inputs and then pass them onto Compaction object once they are finalized. That makes it easy to create a new compaction -- just provide all the parameters to the constructor and you're done. No need to call confusing functions after you created your object. This diff doesn't fully achieve that goal, but it comes pretty close. Here are some of the changes: * have one Compaction constructor instead of two. * inputs_ is constant after construction * MarkFilesBeingCompacted() is now private to Compaction class and automatically called on construction/destruction. * SetupBottommostLevel() is gone. Compaction figures it out on its own based on the input. * CompactionPicker's functions are not passing around Compaction object anymore. They are only passing around the state that they need. Test Plan: make check make asan_check make valgrind_check Reviewers: rven, anthony, sdong, yhchiang Reviewed By: yhchiang Subscribers: sdong, yhchiang, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D36687
2015-04-11 00:01:54 +02:00
ASSERT_EQ(1, static_cast<int>(compaction->num_input_levels()));
ASSERT_EQ(num_levels - 1, compaction->output_level());
}
rocksdb: switch to gtest Summary: Our existing test notation is very similar to what is used in gtest. It makes it easy to adopt what is different. In this diff I modify existing [[ https://code.google.com/p/googletest/wiki/Primer#Test_Fixtures:_Using_the_Same_Data_Configuration_for_Multiple_Te | test fixture ]] classes to inherit from `testing::Test`. Also for unit tests that use fixture class, `TEST` is replaced with `TEST_F` as required in gtest. There are several custom `main` functions in our existing tests. To make this transition easier, I modify all `main` functions to fallow gtest notation. But eventually we can remove them and use implementation of `main` that gtest provides. ```lang=bash % cat ~/transform #!/bin/sh files=$(git ls-files '*test\.cc') for file in $files do if grep -q "rocksdb::test::RunAllTests()" $file then if grep -Eq '^class \w+Test {' $file then perl -pi -e 's/^(class \w+Test) {/${1}: public testing::Test {/g' $file perl -pi -e 's/^(TEST)/${1}_F/g' $file fi perl -pi -e 's/(int main.*\{)/${1}::testing::InitGoogleTest(&argc, argv);/g' $file perl -pi -e 's/rocksdb::test::RunAllTests/RUN_ALL_TESTS/g' $file fi done % sh ~/transform % make format ``` Second iteration of this diff contains only scripted changes. Third iteration contains manual changes to fix last errors and make it compilable. Test Plan: Build and notice no errors. ```lang=bash % USE_CLANG=1 make check -j55 ``` Tests are still testing. Reviewers: meyering, sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D35157
2015-03-17 22:08:00 +01:00
TEST_F(CompactionPickerTest, Level0TriggerDynamic2) {
int num_levels = ioptions_.num_levels;
ioptions_.level_compaction_dynamic_level_bytes = true;
mutable_cf_options_.level0_file_num_compaction_trigger = 2;
mutable_cf_options_.max_bytes_for_level_base = 200;
mutable_cf_options_.max_bytes_for_level_multiplier = 10;
NewVersionStorage(num_levels, kCompactionStyleLevel);
Add(0, 1U, "150", "200");
Add(0, 2U, "200", "250");
Add(num_levels - 1, 3U, "200", "250", 300U);
UpdateVersionStorageInfo();
ASSERT_EQ(vstorage_->base_level(), num_levels - 2);
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(2U, compaction->num_input_files(0));
ASSERT_EQ(1U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(2U, compaction->input(0, 1)->fd.GetNumber());
Make Compaction class easier to use Summary: The goal of this diff is to make Compaction class easier to use. This should also make new compaction algorithms easier to write (like CompactFiles from @yhchiang and dynamic leveled and multi-leveled universal from @sdong). Here are couple of things demonstrating that Compaction class is hard to use: 1. we have two constructors of Compaction class 2. there's this thing called grandparents_, but it appears to only be setup for leveled compaction and not compactfiles 3. it's easy to introduce a subtle and dangerous bug like this: D36225 4. SetupBottomMostLevel() is hard to understand and it shouldn't be. See this comment: https://github.com/facebook/rocksdb/blob/afbafeaeaebfd27a0f3e992fee8e0c57d07658fa/db/compaction.cc#L236-L241. It also made it harder for @yhchiang to write CompactFiles, as evidenced by this: https://github.com/facebook/rocksdb/blob/afbafeaeaebfd27a0f3e992fee8e0c57d07658fa/db/compaction_picker.cc#L204-L210 The problem is that we create Compaction object, which holds a lot of state, and then pass it around to some functions. After those functions are done mutating, then we call couple of functions on Compaction object, like SetupBottommostLevel() and MarkFilesBeingCompacted(). It is very hard to see what's happening with all that Compaction's state while it's travelling across different functions. If you're writing a new PickCompaction() function you need to try really hard to understand what are all the functions you need to run on Compaction object and what state you need to setup. My proposed solution is to make important parts of Compaction immutable after construction. PickCompaction() should calculate compaction inputs and then pass them onto Compaction object once they are finalized. That makes it easy to create a new compaction -- just provide all the parameters to the constructor and you're done. No need to call confusing functions after you created your object. This diff doesn't fully achieve that goal, but it comes pretty close. Here are some of the changes: * have one Compaction constructor instead of two. * inputs_ is constant after construction * MarkFilesBeingCompacted() is now private to Compaction class and automatically called on construction/destruction. * SetupBottommostLevel() is gone. Compaction figures it out on its own based on the input. * CompactionPicker's functions are not passing around Compaction object anymore. They are only passing around the state that they need. Test Plan: make check make asan_check make valgrind_check Reviewers: rven, anthony, sdong, yhchiang Reviewed By: yhchiang Subscribers: sdong, yhchiang, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D36687
2015-04-11 00:01:54 +02:00
ASSERT_EQ(1, static_cast<int>(compaction->num_input_levels()));
ASSERT_EQ(num_levels - 2, compaction->output_level());
}
rocksdb: switch to gtest Summary: Our existing test notation is very similar to what is used in gtest. It makes it easy to adopt what is different. In this diff I modify existing [[ https://code.google.com/p/googletest/wiki/Primer#Test_Fixtures:_Using_the_Same_Data_Configuration_for_Multiple_Te | test fixture ]] classes to inherit from `testing::Test`. Also for unit tests that use fixture class, `TEST` is replaced with `TEST_F` as required in gtest. There are several custom `main` functions in our existing tests. To make this transition easier, I modify all `main` functions to fallow gtest notation. But eventually we can remove them and use implementation of `main` that gtest provides. ```lang=bash % cat ~/transform #!/bin/sh files=$(git ls-files '*test\.cc') for file in $files do if grep -q "rocksdb::test::RunAllTests()" $file then if grep -Eq '^class \w+Test {' $file then perl -pi -e 's/^(class \w+Test) {/${1}: public testing::Test {/g' $file perl -pi -e 's/^(TEST)/${1}_F/g' $file fi perl -pi -e 's/(int main.*\{)/${1}::testing::InitGoogleTest(&argc, argv);/g' $file perl -pi -e 's/rocksdb::test::RunAllTests/RUN_ALL_TESTS/g' $file fi done % sh ~/transform % make format ``` Second iteration of this diff contains only scripted changes. Third iteration contains manual changes to fix last errors and make it compilable. Test Plan: Build and notice no errors. ```lang=bash % USE_CLANG=1 make check -j55 ``` Tests are still testing. Reviewers: meyering, sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D35157
2015-03-17 22:08:00 +01:00
TEST_F(CompactionPickerTest, Level0TriggerDynamic3) {
int num_levels = ioptions_.num_levels;
ioptions_.level_compaction_dynamic_level_bytes = true;
mutable_cf_options_.level0_file_num_compaction_trigger = 2;
mutable_cf_options_.max_bytes_for_level_base = 200;
mutable_cf_options_.max_bytes_for_level_multiplier = 10;
NewVersionStorage(num_levels, kCompactionStyleLevel);
Add(0, 1U, "150", "200");
Add(0, 2U, "200", "250");
Add(num_levels - 1, 3U, "200", "250", 300U);
Add(num_levels - 1, 4U, "300", "350", 3000U);
UpdateVersionStorageInfo();
ASSERT_EQ(vstorage_->base_level(), num_levels - 3);
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(2U, compaction->num_input_files(0));
ASSERT_EQ(1U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(2U, compaction->input(0, 1)->fd.GetNumber());
Make Compaction class easier to use Summary: The goal of this diff is to make Compaction class easier to use. This should also make new compaction algorithms easier to write (like CompactFiles from @yhchiang and dynamic leveled and multi-leveled universal from @sdong). Here are couple of things demonstrating that Compaction class is hard to use: 1. we have two constructors of Compaction class 2. there's this thing called grandparents_, but it appears to only be setup for leveled compaction and not compactfiles 3. it's easy to introduce a subtle and dangerous bug like this: D36225 4. SetupBottomMostLevel() is hard to understand and it shouldn't be. See this comment: https://github.com/facebook/rocksdb/blob/afbafeaeaebfd27a0f3e992fee8e0c57d07658fa/db/compaction.cc#L236-L241. It also made it harder for @yhchiang to write CompactFiles, as evidenced by this: https://github.com/facebook/rocksdb/blob/afbafeaeaebfd27a0f3e992fee8e0c57d07658fa/db/compaction_picker.cc#L204-L210 The problem is that we create Compaction object, which holds a lot of state, and then pass it around to some functions. After those functions are done mutating, then we call couple of functions on Compaction object, like SetupBottommostLevel() and MarkFilesBeingCompacted(). It is very hard to see what's happening with all that Compaction's state while it's travelling across different functions. If you're writing a new PickCompaction() function you need to try really hard to understand what are all the functions you need to run on Compaction object and what state you need to setup. My proposed solution is to make important parts of Compaction immutable after construction. PickCompaction() should calculate compaction inputs and then pass them onto Compaction object once they are finalized. That makes it easy to create a new compaction -- just provide all the parameters to the constructor and you're done. No need to call confusing functions after you created your object. This diff doesn't fully achieve that goal, but it comes pretty close. Here are some of the changes: * have one Compaction constructor instead of two. * inputs_ is constant after construction * MarkFilesBeingCompacted() is now private to Compaction class and automatically called on construction/destruction. * SetupBottommostLevel() is gone. Compaction figures it out on its own based on the input. * CompactionPicker's functions are not passing around Compaction object anymore. They are only passing around the state that they need. Test Plan: make check make asan_check make valgrind_check Reviewers: rven, anthony, sdong, yhchiang Reviewed By: yhchiang Subscribers: sdong, yhchiang, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D36687
2015-04-11 00:01:54 +02:00
ASSERT_EQ(1, static_cast<int>(compaction->num_input_levels()));
ASSERT_EQ(num_levels - 3, compaction->output_level());
}
rocksdb: switch to gtest Summary: Our existing test notation is very similar to what is used in gtest. It makes it easy to adopt what is different. In this diff I modify existing [[ https://code.google.com/p/googletest/wiki/Primer#Test_Fixtures:_Using_the_Same_Data_Configuration_for_Multiple_Te | test fixture ]] classes to inherit from `testing::Test`. Also for unit tests that use fixture class, `TEST` is replaced with `TEST_F` as required in gtest. There are several custom `main` functions in our existing tests. To make this transition easier, I modify all `main` functions to fallow gtest notation. But eventually we can remove them and use implementation of `main` that gtest provides. ```lang=bash % cat ~/transform #!/bin/sh files=$(git ls-files '*test\.cc') for file in $files do if grep -q "rocksdb::test::RunAllTests()" $file then if grep -Eq '^class \w+Test {' $file then perl -pi -e 's/^(class \w+Test) {/${1}: public testing::Test {/g' $file perl -pi -e 's/^(TEST)/${1}_F/g' $file fi perl -pi -e 's/(int main.*\{)/${1}::testing::InitGoogleTest(&argc, argv);/g' $file perl -pi -e 's/rocksdb::test::RunAllTests/RUN_ALL_TESTS/g' $file fi done % sh ~/transform % make format ``` Second iteration of this diff contains only scripted changes. Third iteration contains manual changes to fix last errors and make it compilable. Test Plan: Build and notice no errors. ```lang=bash % USE_CLANG=1 make check -j55 ``` Tests are still testing. Reviewers: meyering, sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D35157
2015-03-17 22:08:00 +01:00
TEST_F(CompactionPickerTest, Level0TriggerDynamic4) {
int num_levels = ioptions_.num_levels;
ioptions_.level_compaction_dynamic_level_bytes = true;
mutable_cf_options_.level0_file_num_compaction_trigger = 2;
mutable_cf_options_.max_bytes_for_level_base = 200;
mutable_cf_options_.max_bytes_for_level_multiplier = 10;
NewVersionStorage(num_levels, kCompactionStyleLevel);
Add(0, 1U, "150", "200");
Add(0, 2U, "200", "250");
Add(num_levels - 1, 3U, "200", "250", 300U);
Add(num_levels - 1, 4U, "300", "350", 3000U);
Add(num_levels - 3, 5U, "150", "180", 3U);
Add(num_levels - 3, 6U, "181", "300", 3U);
Add(num_levels - 3, 7U, "400", "450", 3U);
UpdateVersionStorageInfo();
ASSERT_EQ(vstorage_->base_level(), num_levels - 3);
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(2U, compaction->num_input_files(0));
ASSERT_EQ(1U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(2U, compaction->input(0, 1)->fd.GetNumber());
Make Compaction class easier to use Summary: The goal of this diff is to make Compaction class easier to use. This should also make new compaction algorithms easier to write (like CompactFiles from @yhchiang and dynamic leveled and multi-leveled universal from @sdong). Here are couple of things demonstrating that Compaction class is hard to use: 1. we have two constructors of Compaction class 2. there's this thing called grandparents_, but it appears to only be setup for leveled compaction and not compactfiles 3. it's easy to introduce a subtle and dangerous bug like this: D36225 4. SetupBottomMostLevel() is hard to understand and it shouldn't be. See this comment: https://github.com/facebook/rocksdb/blob/afbafeaeaebfd27a0f3e992fee8e0c57d07658fa/db/compaction.cc#L236-L241. It also made it harder for @yhchiang to write CompactFiles, as evidenced by this: https://github.com/facebook/rocksdb/blob/afbafeaeaebfd27a0f3e992fee8e0c57d07658fa/db/compaction_picker.cc#L204-L210 The problem is that we create Compaction object, which holds a lot of state, and then pass it around to some functions. After those functions are done mutating, then we call couple of functions on Compaction object, like SetupBottommostLevel() and MarkFilesBeingCompacted(). It is very hard to see what's happening with all that Compaction's state while it's travelling across different functions. If you're writing a new PickCompaction() function you need to try really hard to understand what are all the functions you need to run on Compaction object and what state you need to setup. My proposed solution is to make important parts of Compaction immutable after construction. PickCompaction() should calculate compaction inputs and then pass them onto Compaction object once they are finalized. That makes it easy to create a new compaction -- just provide all the parameters to the constructor and you're done. No need to call confusing functions after you created your object. This diff doesn't fully achieve that goal, but it comes pretty close. Here are some of the changes: * have one Compaction constructor instead of two. * inputs_ is constant after construction * MarkFilesBeingCompacted() is now private to Compaction class and automatically called on construction/destruction. * SetupBottommostLevel() is gone. Compaction figures it out on its own based on the input. * CompactionPicker's functions are not passing around Compaction object anymore. They are only passing around the state that they need. Test Plan: make check make asan_check make valgrind_check Reviewers: rven, anthony, sdong, yhchiang Reviewed By: yhchiang Subscribers: sdong, yhchiang, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D36687
2015-04-11 00:01:54 +02:00
ASSERT_EQ(2U, compaction->num_input_files(1));
ASSERT_EQ(num_levels - 3, compaction->level(1));
ASSERT_EQ(5U, compaction->input(1, 0)->fd.GetNumber());
ASSERT_EQ(6U, compaction->input(1, 1)->fd.GetNumber());
ASSERT_EQ(2, static_cast<int>(compaction->num_input_levels()));
ASSERT_EQ(num_levels - 3, compaction->output_level());
}
rocksdb: switch to gtest Summary: Our existing test notation is very similar to what is used in gtest. It makes it easy to adopt what is different. In this diff I modify existing [[ https://code.google.com/p/googletest/wiki/Primer#Test_Fixtures:_Using_the_Same_Data_Configuration_for_Multiple_Te | test fixture ]] classes to inherit from `testing::Test`. Also for unit tests that use fixture class, `TEST` is replaced with `TEST_F` as required in gtest. There are several custom `main` functions in our existing tests. To make this transition easier, I modify all `main` functions to fallow gtest notation. But eventually we can remove them and use implementation of `main` that gtest provides. ```lang=bash % cat ~/transform #!/bin/sh files=$(git ls-files '*test\.cc') for file in $files do if grep -q "rocksdb::test::RunAllTests()" $file then if grep -Eq '^class \w+Test {' $file then perl -pi -e 's/^(class \w+Test) {/${1}: public testing::Test {/g' $file perl -pi -e 's/^(TEST)/${1}_F/g' $file fi perl -pi -e 's/(int main.*\{)/${1}::testing::InitGoogleTest(&argc, argv);/g' $file perl -pi -e 's/rocksdb::test::RunAllTests/RUN_ALL_TESTS/g' $file fi done % sh ~/transform % make format ``` Second iteration of this diff contains only scripted changes. Third iteration contains manual changes to fix last errors and make it compilable. Test Plan: Build and notice no errors. ```lang=bash % USE_CLANG=1 make check -j55 ``` Tests are still testing. Reviewers: meyering, sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D35157
2015-03-17 22:08:00 +01:00
TEST_F(CompactionPickerTest, LevelTriggerDynamic4) {
int num_levels = ioptions_.num_levels;
ioptions_.level_compaction_dynamic_level_bytes = true;
ioptions_.compaction_pri = kMinOverlappingRatio;
mutable_cf_options_.level0_file_num_compaction_trigger = 2;
mutable_cf_options_.max_bytes_for_level_base = 200;
mutable_cf_options_.max_bytes_for_level_multiplier = 10;
NewVersionStorage(num_levels, kCompactionStyleLevel);
Add(0, 1U, "150", "200");
Add(num_levels - 1, 3U, "200", "250", 300U);
Add(num_levels - 1, 4U, "300", "350", 3000U);
Add(num_levels - 1, 4U, "400", "450", 3U);
Add(num_levels - 2, 5U, "150", "180", 300U);
Add(num_levels - 2, 6U, "181", "350", 500U);
Add(num_levels - 2, 7U, "400", "450", 200U);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(1U, compaction->num_input_files(0));
ASSERT_EQ(5U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(0, compaction->num_input_files(1));
ASSERT_EQ(1U, compaction->num_input_levels());
ASSERT_EQ(num_levels - 1, compaction->output_level());
}
// Universal and FIFO Compactions are not supported in ROCKSDB_LITE
#ifndef ROCKSDB_LITE
rocksdb: switch to gtest Summary: Our existing test notation is very similar to what is used in gtest. It makes it easy to adopt what is different. In this diff I modify existing [[ https://code.google.com/p/googletest/wiki/Primer#Test_Fixtures:_Using_the_Same_Data_Configuration_for_Multiple_Te | test fixture ]] classes to inherit from `testing::Test`. Also for unit tests that use fixture class, `TEST` is replaced with `TEST_F` as required in gtest. There are several custom `main` functions in our existing tests. To make this transition easier, I modify all `main` functions to fallow gtest notation. But eventually we can remove them and use implementation of `main` that gtest provides. ```lang=bash % cat ~/transform #!/bin/sh files=$(git ls-files '*test\.cc') for file in $files do if grep -q "rocksdb::test::RunAllTests()" $file then if grep -Eq '^class \w+Test {' $file then perl -pi -e 's/^(class \w+Test) {/${1}: public testing::Test {/g' $file perl -pi -e 's/^(TEST)/${1}_F/g' $file fi perl -pi -e 's/(int main.*\{)/${1}::testing::InitGoogleTest(&argc, argv);/g' $file perl -pi -e 's/rocksdb::test::RunAllTests/RUN_ALL_TESTS/g' $file fi done % sh ~/transform % make format ``` Second iteration of this diff contains only scripted changes. Third iteration contains manual changes to fix last errors and make it compilable. Test Plan: Build and notice no errors. ```lang=bash % USE_CLANG=1 make check -j55 ``` Tests are still testing. Reviewers: meyering, sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D35157
2015-03-17 22:08:00 +01:00
TEST_F(CompactionPickerTest, NeedsCompactionUniversal) {
NewVersionStorage(1, kCompactionStyleUniversal);
UniversalCompactionPicker universal_compaction_picker(
ioptions_, &icmp_);
UpdateVersionStorageInfo();
// must return false when there's no files.
ASSERT_EQ(universal_compaction_picker.NeedsCompaction(vstorage_.get()),
false);
// verify the trigger given different number of L0 files.
for (int i = 1;
i <= mutable_cf_options_.level0_file_num_compaction_trigger * 2; ++i) {
NewVersionStorage(1, kCompactionStyleUniversal);
Add(0, i, ToString((i + 100) * 1000).c_str(),
ToString((i + 100) * 1000 + 999).c_str(), 1000000, 0, i * 100,
i * 100 + 99);
UpdateVersionStorageInfo();
ASSERT_EQ(level_compaction_picker.NeedsCompaction(vstorage_.get()),
vstorage_->CompactionScore(0) >= 1);
}
}
TEST_F(CompactionPickerTest, CompactionUniversalIngestBehindReservedLevel) {
const uint64_t kFileSize = 100000;
NewVersionStorage(1, kCompactionStyleUniversal);
ioptions_.allow_ingest_behind = true;
ioptions_.num_levels = 3;
UniversalCompactionPicker universal_compaction_picker(ioptions_, &icmp_);
UpdateVersionStorageInfo();
// must return false when there's no files.
ASSERT_EQ(universal_compaction_picker.NeedsCompaction(vstorage_.get()),
false);
NewVersionStorage(3, kCompactionStyleUniversal);
Add(0, 1U, "150", "200", kFileSize, 0, 500, 550);
Add(0, 2U, "201", "250", kFileSize, 0, 401, 450);
Add(0, 4U, "260", "300", kFileSize, 0, 260, 300);
Add(1, 5U, "100", "151", kFileSize, 0, 200, 251);
Add(1, 3U, "301", "350", kFileSize, 0, 101, 150);
Add(2, 6U, "120", "200", kFileSize, 0, 20, 100);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(
universal_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
// output level should be the one above the bottom-most
ASSERT_EQ(1, compaction->output_level());
}
// Tests if the files can be trivially moved in multi level
// universal compaction when allow_trivial_move option is set
// In this test as the input files overlaps, they cannot
// be trivially moved.
TEST_F(CompactionPickerTest, CannotTrivialMoveUniversal) {
const uint64_t kFileSize = 100000;
mutable_cf_options_.compaction_options_universal.allow_trivial_move = true;
NewVersionStorage(1, kCompactionStyleUniversal);
UniversalCompactionPicker universal_compaction_picker(ioptions_, &icmp_);
UpdateVersionStorageInfo();
// must return false when there's no files.
ASSERT_EQ(universal_compaction_picker.NeedsCompaction(vstorage_.get()),
false);
NewVersionStorage(3, kCompactionStyleUniversal);
Add(0, 1U, "150", "200", kFileSize, 0, 500, 550);
Add(0, 2U, "201", "250", kFileSize, 0, 401, 450);
Add(0, 4U, "260", "300", kFileSize, 0, 260, 300);
Add(1, 5U, "100", "151", kFileSize, 0, 200, 251);
Add(1, 3U, "301", "350", kFileSize, 0, 101, 150);
Add(2, 6U, "120", "200", kFileSize, 0, 20, 100);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(
universal_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(!compaction->is_trivial_move());
}
// Tests if the files can be trivially moved in multi level
// universal compaction when allow_trivial_move option is set
// In this test as the input files doesn't overlaps, they should
// be trivially moved.
TEST_F(CompactionPickerTest, AllowsTrivialMoveUniversal) {
const uint64_t kFileSize = 100000;
mutable_cf_options_.compaction_options_universal.allow_trivial_move = true;
UniversalCompactionPicker universal_compaction_picker(ioptions_, &icmp_);
NewVersionStorage(3, kCompactionStyleUniversal);
Add(0, 1U, "150", "200", kFileSize, 0, 500, 550);
Add(0, 2U, "201", "250", kFileSize, 0, 401, 450);
Add(0, 4U, "260", "300", kFileSize, 0, 260, 300);
Add(1, 5U, "010", "080", kFileSize, 0, 200, 251);
Add(2, 3U, "301", "350", kFileSize, 0, 101, 150);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(
universal_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction->is_trivial_move());
}
TEST_F(CompactionPickerTest, UniversalPeriodicCompaction1) {
// The case where universal periodic compaction can be picked
// with some newer files being compacted.
const uint64_t kFileSize = 100000;
mutable_cf_options_.periodic_compaction_seconds = 1000;
UniversalCompactionPicker universal_compaction_picker(ioptions_, &icmp_);
NewVersionStorage(5, kCompactionStyleUniversal);
Add(0, 1U, "150", "200", kFileSize, 0, 500, 550);
Add(0, 2U, "201", "250", kFileSize, 0, 401, 450);
Add(0, 4U, "260", "300", kFileSize, 0, 260, 300);
Add(3, 5U, "010", "080", kFileSize, 0, 200, 251);
Add(4, 3U, "301", "350", kFileSize, 0, 101, 150);
Add(4, 6U, "501", "750", kFileSize, 0, 101, 150);
file_map_[2].first->being_compacted = true;
UpdateVersionStorageInfo();
vstorage_->TEST_AddFileMarkedForPeriodicCompaction(4, file_map_[3].first);
std::unique_ptr<Compaction> compaction(
universal_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction);
ASSERT_EQ(4, compaction->output_level());
ASSERT_EQ(0, compaction->start_level());
ASSERT_EQ(1U, compaction->num_input_files(0));
}
TEST_F(CompactionPickerTest, UniversalPeriodicCompaction2) {
// The case where universal periodic compaction does not
// pick up only level to compact if it doesn't cover
// any file marked as periodic compaction.
const uint64_t kFileSize = 100000;
mutable_cf_options_.periodic_compaction_seconds = 1000;
UniversalCompactionPicker universal_compaction_picker(ioptions_, &icmp_);
NewVersionStorage(5, kCompactionStyleUniversal);
Add(0, 1U, "150", "200", kFileSize, 0, 500, 550);
Add(3, 5U, "010", "080", kFileSize, 0, 200, 251);
Add(4, 3U, "301", "350", kFileSize, 0, 101, 150);
Add(4, 6U, "501", "750", kFileSize, 0, 101, 150);
file_map_[5].first->being_compacted = true;
UpdateVersionStorageInfo();
vstorage_->TEST_AddFileMarkedForPeriodicCompaction(0, file_map_[1].first);
std::unique_ptr<Compaction> compaction(
universal_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_FALSE(compaction);
}
TEST_F(CompactionPickerTest, UniversalPeriodicCompaction3) {
// The case where universal periodic compaction does not
// pick up only the last sorted run which is an L0 file if it isn't
// marked as periodic compaction.
const uint64_t kFileSize = 100000;
mutable_cf_options_.periodic_compaction_seconds = 1000;
UniversalCompactionPicker universal_compaction_picker(ioptions_, &icmp_);
NewVersionStorage(5, kCompactionStyleUniversal);
Add(0, 1U, "150", "200", kFileSize, 0, 500, 550);
Add(0, 5U, "010", "080", kFileSize, 0, 200, 251);
Add(0, 6U, "501", "750", kFileSize, 0, 101, 150);
file_map_[5].first->being_compacted = true;
UpdateVersionStorageInfo();
vstorage_->TEST_AddFileMarkedForPeriodicCompaction(0, file_map_[1].first);
std::unique_ptr<Compaction> compaction(
universal_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_FALSE(compaction);
}
TEST_F(CompactionPickerTest, UniversalPeriodicCompaction4) {
// The case where universal periodic compaction couldn't form
// a compaction that inlcudes any file marked for periodic compaction.
// Right now we form the compaction anyway if it is more than one
// sorted run. Just put the case here to validate that it doesn't
// crash.
const uint64_t kFileSize = 100000;
mutable_cf_options_.periodic_compaction_seconds = 1000;
UniversalCompactionPicker universal_compaction_picker(ioptions_, &icmp_);
NewVersionStorage(5, kCompactionStyleUniversal);
Add(0, 1U, "150", "200", kFileSize, 0, 500, 550);
Add(2, 2U, "010", "080", kFileSize, 0, 200, 251);
Add(3, 5U, "010", "080", kFileSize, 0, 200, 251);
Add(4, 3U, "301", "350", kFileSize, 0, 101, 150);
Add(4, 6U, "501", "750", kFileSize, 0, 101, 150);
file_map_[2].first->being_compacted = true;
UpdateVersionStorageInfo();
vstorage_->TEST_AddFileMarkedForPeriodicCompaction(0, file_map_[2].first);
std::unique_ptr<Compaction> compaction(
universal_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(!compaction ||
compaction->start_level() != compaction->output_level());
}
TEST_F(CompactionPickerTest, UniversalPeriodicCompaction5) {
// Test single L0 file periodic compaction triggering.
const uint64_t kFileSize = 100000;
mutable_cf_options_.periodic_compaction_seconds = 1000;
UniversalCompactionPicker universal_compaction_picker(ioptions_, &icmp_);
NewVersionStorage(5, kCompactionStyleUniversal);
Add(0, 6U, "150", "200", kFileSize, 0, 500, 550);
UpdateVersionStorageInfo();
vstorage_->TEST_AddFileMarkedForPeriodicCompaction(0, file_map_[6].first);
std::unique_ptr<Compaction> compaction(
universal_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction);
ASSERT_EQ(0, compaction->start_level());
ASSERT_EQ(1U, compaction->num_input_files(0));
ASSERT_EQ(6U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(4, compaction->output_level());
}
TEST_F(CompactionPickerTest, UniversalPeriodicCompaction6) {
// Test single sorted run non-L0 periodic compaction
const uint64_t kFileSize = 100000;
mutable_cf_options_.periodic_compaction_seconds = 1000;
UniversalCompactionPicker universal_compaction_picker(ioptions_, &icmp_);
NewVersionStorage(5, kCompactionStyleUniversal);
Add(4, 5U, "150", "200", kFileSize, 0, 500, 550);
Add(4, 6U, "350", "400", kFileSize, 0, 500, 550);
UpdateVersionStorageInfo();
vstorage_->TEST_AddFileMarkedForPeriodicCompaction(4, file_map_[6].first);
std::unique_ptr<Compaction> compaction(
universal_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction);
ASSERT_EQ(4, compaction->start_level());
ASSERT_EQ(2U, compaction->num_input_files(0));
ASSERT_EQ(5U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(6U, compaction->input(0, 1)->fd.GetNumber());
ASSERT_EQ(4, compaction->output_level());
}
rocksdb: switch to gtest Summary: Our existing test notation is very similar to what is used in gtest. It makes it easy to adopt what is different. In this diff I modify existing [[ https://code.google.com/p/googletest/wiki/Primer#Test_Fixtures:_Using_the_Same_Data_Configuration_for_Multiple_Te | test fixture ]] classes to inherit from `testing::Test`. Also for unit tests that use fixture class, `TEST` is replaced with `TEST_F` as required in gtest. There are several custom `main` functions in our existing tests. To make this transition easier, I modify all `main` functions to fallow gtest notation. But eventually we can remove them and use implementation of `main` that gtest provides. ```lang=bash % cat ~/transform #!/bin/sh files=$(git ls-files '*test\.cc') for file in $files do if grep -q "rocksdb::test::RunAllTests()" $file then if grep -Eq '^class \w+Test {' $file then perl -pi -e 's/^(class \w+Test) {/${1}: public testing::Test {/g' $file perl -pi -e 's/^(TEST)/${1}_F/g' $file fi perl -pi -e 's/(int main.*\{)/${1}::testing::InitGoogleTest(&argc, argv);/g' $file perl -pi -e 's/rocksdb::test::RunAllTests/RUN_ALL_TESTS/g' $file fi done % sh ~/transform % make format ``` Second iteration of this diff contains only scripted changes. Third iteration contains manual changes to fix last errors and make it compilable. Test Plan: Build and notice no errors. ```lang=bash % USE_CLANG=1 make check -j55 ``` Tests are still testing. Reviewers: meyering, sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D35157
2015-03-17 22:08:00 +01:00
TEST_F(CompactionPickerTest, NeedsCompactionFIFO) {
NewVersionStorage(1, kCompactionStyleFIFO);
const int kFileCount =
mutable_cf_options_.level0_file_num_compaction_trigger * 3;
const uint64_t kFileSize = 100000;
const uint64_t kMaxSize = kFileSize * kFileCount / 2;
fifo_options_.max_table_files_size = kMaxSize;
mutable_cf_options_.compaction_options_fifo = fifo_options_;
FIFOCompactionPicker fifo_compaction_picker(ioptions_, &icmp_);
UpdateVersionStorageInfo();
// must return false when there's no files.
ASSERT_EQ(fifo_compaction_picker.NeedsCompaction(vstorage_.get()), false);
// verify whether compaction is needed based on the current
// size of L0 files.
uint64_t current_size = 0;
for (int i = 1; i <= kFileCount; ++i) {
NewVersionStorage(1, kCompactionStyleFIFO);
Add(0, i, ToString((i + 100) * 1000).c_str(),
ToString((i + 100) * 1000 + 999).c_str(),
kFileSize, 0, i * 100, i * 100 + 99);
current_size += kFileSize;
UpdateVersionStorageInfo();
ASSERT_EQ(fifo_compaction_picker.NeedsCompaction(vstorage_.get()),
vstorage_->CompactionScore(0) >= 1);
}
}
#endif // ROCKSDB_LITE
TEST_F(CompactionPickerTest, CompactionPriMinOverlapping1) {
NewVersionStorage(6, kCompactionStyleLevel);
ioptions_.compaction_pri = kMinOverlappingRatio;
mutable_cf_options_.target_file_size_base = 100000000000;
mutable_cf_options_.target_file_size_multiplier = 10;
mutable_cf_options_.max_bytes_for_level_base = 10 * 1024 * 1024;
mutable_cf_options_.RefreshDerivedOptions(ioptions_);
Add(2, 6U, "150", "179", 50000000U);
Add(2, 7U, "180", "220", 50000000U);
Add(2, 8U, "321", "400", 50000000U); // File not overlapping
Add(2, 9U, "721", "800", 50000000U);
Add(3, 26U, "150", "170", 260000000U);
Add(3, 27U, "171", "179", 260000000U);
Add(3, 28U, "191", "220", 260000000U);
Add(3, 29U, "221", "300", 260000000U);
Add(3, 30U, "750", "900", 260000000U);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(1U, compaction->num_input_files(0));
// Pick file 8 because it overlaps with 0 files on level 3.
ASSERT_EQ(8U, compaction->input(0, 0)->fd.GetNumber());
// Compaction input size * 1.1
ASSERT_GE(uint64_t{55000000}, compaction->OutputFilePreallocationSize());
}
TEST_F(CompactionPickerTest, CompactionPriMinOverlapping2) {
NewVersionStorage(6, kCompactionStyleLevel);
ioptions_.compaction_pri = kMinOverlappingRatio;
mutable_cf_options_.target_file_size_base = 10000000;
mutable_cf_options_.target_file_size_multiplier = 10;
mutable_cf_options_.max_bytes_for_level_base = 10 * 1024 * 1024;
Add(2, 6U, "150", "175",
60000000U); // Overlaps with file 26, 27, total size 521M
Add(2, 7U, "176", "200", 60000000U); // Overlaps with file 27, 28, total size
// 520M, the smalelst overlapping
Add(2, 8U, "201", "300",
60000000U); // Overlaps with file 28, 29, total size 521M
Add(3, 26U, "100", "110", 261000000U);
Add(3, 26U, "150", "170", 261000000U);
Add(3, 27U, "171", "179", 260000000U);
Add(3, 28U, "191", "220", 260000000U);
Add(3, 29U, "221", "300", 261000000U);
Add(3, 30U, "321", "400", 261000000U);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(1U, compaction->num_input_files(0));
// Picking file 7 because overlapping ratio is the biggest.
ASSERT_EQ(7U, compaction->input(0, 0)->fd.GetNumber());
}
TEST_F(CompactionPickerTest, CompactionPriMinOverlapping3) {
NewVersionStorage(6, kCompactionStyleLevel);
ioptions_.compaction_pri = kMinOverlappingRatio;
mutable_cf_options_.max_bytes_for_level_base = 10000000;
mutable_cf_options_.max_bytes_for_level_multiplier = 10;
// file 7 and 8 over lap with the same file, but file 8 is smaller so
// it will be picked.
Add(2, 6U, "150", "167", 60000000U); // Overlaps with file 26, 27
Add(2, 7U, "168", "169", 60000000U); // Overlaps with file 27
Add(2, 8U, "201", "300", 61000000U); // Overlaps with file 28, but the file
// itself is larger. Should be picked.
Add(3, 26U, "160", "165", 260000000U);
Add(3, 27U, "166", "170", 260000000U);
Add(3, 28U, "180", "400", 260000000U);
Add(3, 29U, "401", "500", 260000000U);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(1U, compaction->num_input_files(0));
// Picking file 8 because overlapping ratio is the biggest.
ASSERT_EQ(8U, compaction->input(0, 0)->fd.GetNumber());
}
TEST_F(CompactionPickerTest, CompactionPriMinOverlapping4) {
NewVersionStorage(6, kCompactionStyleLevel);
ioptions_.compaction_pri = kMinOverlappingRatio;
mutable_cf_options_.max_bytes_for_level_base = 10000000;
mutable_cf_options_.max_bytes_for_level_multiplier = 10;
// file 7 and 8 over lap with the same file, but file 8 is smaller so
// it will be picked.
// Overlaps with file 26, 27. And the file is compensated so will be
// picked up.
Add(2, 6U, "150", "167", 60000000U, 0, 100, 100, 180000000U);
Add(2, 7U, "168", "169", 60000000U); // Overlaps with file 27
Add(2, 8U, "201", "300", 61000000U); // Overlaps with file 28
Add(3, 26U, "160", "165", 60000000U);
// Boosted file size in output level is not considered.
Add(3, 27U, "166", "170", 60000000U, 0, 100, 100, 260000000U);
Add(3, 28U, "180", "400", 60000000U);
Add(3, 29U, "401", "500", 60000000U);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(1U, compaction->num_input_files(0));
// Picking file 8 because overlapping ratio is the biggest.
ASSERT_EQ(6U, compaction->input(0, 0)->fd.GetNumber());
}
// This test exhibits the bug where we don't properly reset parent_index in
// PickCompaction()
TEST_F(CompactionPickerTest, ParentIndexResetBug) {
int num_levels = ioptions_.num_levels;
mutable_cf_options_.level0_file_num_compaction_trigger = 2;
mutable_cf_options_.max_bytes_for_level_base = 200;
NewVersionStorage(num_levels, kCompactionStyleLevel);
Add(0, 1U, "150", "200"); // <- marked for compaction
Add(1, 3U, "400", "500", 600); // <- this one needs compacting
Add(2, 4U, "150", "200");
Add(2, 5U, "201", "210");
Add(2, 6U, "300", "310");
Add(2, 7U, "400", "500"); // <- being compacted
vstorage_->LevelFiles(2)[3]->being_compacted = true;
vstorage_->LevelFiles(0)[0]->marked_for_compaction = true;
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
}
// This test checks ExpandWhileOverlapping() by having overlapping user keys
// ranges (with different sequence numbers) in the input files.
TEST_F(CompactionPickerTest, OverlappingUserKeys) {
NewVersionStorage(6, kCompactionStyleLevel);
ioptions_.compaction_pri = kByCompensatedSize;
Add(1, 1U, "100", "150", 1U);
// Overlapping user keys
Add(1, 2U, "200", "400", 1U);
Add(1, 3U, "400", "500", 1000000000U, 0, 0);
Add(2, 4U, "600", "700", 1U);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(1U, compaction->num_input_levels());
ASSERT_EQ(2U, compaction->num_input_files(0));
ASSERT_EQ(2U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(3U, compaction->input(0, 1)->fd.GetNumber());
}
TEST_F(CompactionPickerTest, OverlappingUserKeys2) {
NewVersionStorage(6, kCompactionStyleLevel);
// Overlapping user keys on same level and output level
Add(1, 1U, "200", "400", 1000000000U);
Add(1, 2U, "400", "500", 1U, 0, 0);
Add(2, 3U, "000", "100", 1U);
Add(2, 4U, "100", "600", 1U, 0, 0);
Add(2, 5U, "600", "700", 1U, 0, 0);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(2U, compaction->num_input_levels());
ASSERT_EQ(2U, compaction->num_input_files(0));
ASSERT_EQ(3U, compaction->num_input_files(1));
ASSERT_EQ(1U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(2U, compaction->input(0, 1)->fd.GetNumber());
ASSERT_EQ(3U, compaction->input(1, 0)->fd.GetNumber());
ASSERT_EQ(4U, compaction->input(1, 1)->fd.GetNumber());
ASSERT_EQ(5U, compaction->input(1, 2)->fd.GetNumber());
}
TEST_F(CompactionPickerTest, OverlappingUserKeys3) {
NewVersionStorage(6, kCompactionStyleLevel);
// Chain of overlapping user key ranges (forces ExpandWhileOverlapping() to
// expand multiple times)
Add(1, 1U, "100", "150", 1U);
Add(1, 2U, "150", "200", 1U, 0, 0);
Add(1, 3U, "200", "250", 1000000000U, 0, 0);
Add(1, 4U, "250", "300", 1U, 0, 0);
Add(1, 5U, "300", "350", 1U, 0, 0);
// Output level overlaps with the beginning and the end of the chain
Add(2, 6U, "050", "100", 1U);
Add(2, 7U, "350", "400", 1U);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(2U, compaction->num_input_levels());
ASSERT_EQ(5U, compaction->num_input_files(0));
ASSERT_EQ(2U, compaction->num_input_files(1));
ASSERT_EQ(1U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(2U, compaction->input(0, 1)->fd.GetNumber());
ASSERT_EQ(3U, compaction->input(0, 2)->fd.GetNumber());
ASSERT_EQ(4U, compaction->input(0, 3)->fd.GetNumber());
ASSERT_EQ(5U, compaction->input(0, 4)->fd.GetNumber());
ASSERT_EQ(6U, compaction->input(1, 0)->fd.GetNumber());
ASSERT_EQ(7U, compaction->input(1, 1)->fd.GetNumber());
}
TEST_F(CompactionPickerTest, OverlappingUserKeys4) {
NewVersionStorage(6, kCompactionStyleLevel);
mutable_cf_options_.max_bytes_for_level_base = 1000000;
Add(1, 1U, "100", "150", 1U);
Add(1, 2U, "150", "199", 1U, 0, 0);
Add(1, 3U, "200", "250", 1100000U, 0, 0);
Add(1, 4U, "251", "300", 1U, 0, 0);
Add(1, 5U, "300", "350", 1U, 0, 0);
Add(2, 6U, "100", "115", 1U);
Add(2, 7U, "125", "325", 1U);
Add(2, 8U, "350", "400", 1U);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(2U, compaction->num_input_levels());
ASSERT_EQ(1U, compaction->num_input_files(0));
ASSERT_EQ(1U, compaction->num_input_files(1));
ASSERT_EQ(3U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(7U, compaction->input(1, 0)->fd.GetNumber());
}
TEST_F(CompactionPickerTest, OverlappingUserKeys5) {
NewVersionStorage(6, kCompactionStyleLevel);
// Overlapping user keys on same level and output level
Add(1, 1U, "200", "400", 1000000000U);
Add(1, 2U, "400", "500", 1U, 0, 0);
Add(2, 3U, "000", "100", 1U);
Add(2, 4U, "100", "600", 1U, 0, 0);
Add(2, 5U, "600", "700", 1U, 0, 0);
vstorage_->LevelFiles(2)[2]->being_compacted = true;
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() == nullptr);
}
TEST_F(CompactionPickerTest, OverlappingUserKeys6) {
NewVersionStorage(6, kCompactionStyleLevel);
// Overlapping user keys on same level and output level
Add(1, 1U, "200", "400", 1U, 0, 0);
Add(1, 2U, "401", "500", 1U, 0, 0);
Add(2, 3U, "000", "100", 1U);
Add(2, 4U, "100", "300", 1U, 0, 0);
Add(2, 5U, "305", "450", 1U, 0, 0);
Add(2, 6U, "460", "600", 1U, 0, 0);
Add(2, 7U, "600", "700", 1U, 0, 0);
vstorage_->LevelFiles(1)[0]->marked_for_compaction = true;
vstorage_->LevelFiles(1)[1]->marked_for_compaction = true;
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(2U, compaction->num_input_levels());
ASSERT_EQ(1U, compaction->num_input_files(0));
ASSERT_EQ(3U, compaction->num_input_files(1));
}
TEST_F(CompactionPickerTest, OverlappingUserKeys7) {
NewVersionStorage(6, kCompactionStyleLevel);
mutable_cf_options_.max_compaction_bytes = 100000000000u;
// Overlapping user keys on same level and output level
Add(1, 1U, "200", "400", 1U, 0, 0);
Add(1, 2U, "401", "500", 1000000000U, 0, 0);
Add(2, 3U, "100", "250", 1U);
Add(2, 4U, "300", "600", 1U, 0, 0);
Add(2, 5U, "600", "800", 1U, 0, 0);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(2U, compaction->num_input_levels());
ASSERT_GE(1U, compaction->num_input_files(0));
ASSERT_GE(2U, compaction->num_input_files(1));
// File 5 has to be included in the compaction
ASSERT_EQ(5U, compaction->inputs(1)->back()->fd.GetNumber());
}
TEST_F(CompactionPickerTest, OverlappingUserKeys8) {
NewVersionStorage(6, kCompactionStyleLevel);
mutable_cf_options_.max_compaction_bytes = 100000000000u;
// grow the number of inputs in "level" without
// changing the number of "level+1" files we pick up
// Expand input level as much as possible
// no overlapping case
Add(1, 1U, "101", "150", 1U);
Add(1, 2U, "151", "200", 1U);
Add(1, 3U, "201", "300", 1000000000U);
Add(1, 4U, "301", "400", 1U);
Add(1, 5U, "401", "500", 1U);
Add(2, 6U, "150", "200", 1U);
Add(2, 7U, "200", "450", 1U, 0, 0);
Add(2, 8U, "500", "600", 1U);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(2U, compaction->num_input_levels());
ASSERT_EQ(3U, compaction->num_input_files(0));
ASSERT_EQ(2U, compaction->num_input_files(1));
ASSERT_EQ(2U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(3U, compaction->input(0, 1)->fd.GetNumber());
ASSERT_EQ(4U, compaction->input(0, 2)->fd.GetNumber());
ASSERT_EQ(6U, compaction->input(1, 0)->fd.GetNumber());
ASSERT_EQ(7U, compaction->input(1, 1)->fd.GetNumber());
}
TEST_F(CompactionPickerTest, OverlappingUserKeys9) {
NewVersionStorage(6, kCompactionStyleLevel);
mutable_cf_options_.max_compaction_bytes = 100000000000u;
// grow the number of inputs in "level" without
// changing the number of "level+1" files we pick up
// Expand input level as much as possible
// overlapping case
Add(1, 1U, "121", "150", 1U);
Add(1, 2U, "151", "200", 1U);
Add(1, 3U, "201", "300", 1000000000U);
Add(1, 4U, "301", "400", 1U);
Add(1, 5U, "401", "500", 1U);
Add(2, 6U, "100", "120", 1U);
Add(2, 7U, "150", "200", 1U);
Add(2, 8U, "200", "450", 1U, 0, 0);
Add(2, 9U, "501", "600", 1U);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(2U, compaction->num_input_levels());
ASSERT_EQ(5U, compaction->num_input_files(0));
ASSERT_EQ(2U, compaction->num_input_files(1));
ASSERT_EQ(1U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(2U, compaction->input(0, 1)->fd.GetNumber());
ASSERT_EQ(3U, compaction->input(0, 2)->fd.GetNumber());
ASSERT_EQ(4U, compaction->input(0, 3)->fd.GetNumber());
ASSERT_EQ(7U, compaction->input(1, 0)->fd.GetNumber());
ASSERT_EQ(8U, compaction->input(1, 1)->fd.GetNumber());
}
2017-07-20 05:33:52 +02:00
TEST_F(CompactionPickerTest, OverlappingUserKeys10) {
// Locked file encountered when pulling in extra input-level files with same
// user keys. Verify we pick the next-best file from the same input level.
NewVersionStorage(6, kCompactionStyleLevel);
mutable_cf_options_.max_compaction_bytes = 100000000000u;
// file_number 2U is largest and thus first choice. But it overlaps with
// file_number 1U which is being compacted. So instead we pick the next-
// biggest file, 3U, which is eligible for compaction.
Add(1 /* level */, 1U /* file_number */, "100" /* smallest */,
"150" /* largest */, 1U /* file_size */);
file_map_[1U].first->being_compacted = true;
Add(1 /* level */, 2U /* file_number */, "150" /* smallest */,
"200" /* largest */, 1000000000U /* file_size */, 0 /* smallest_seq */,
0 /* largest_seq */);
Add(1 /* level */, 3U /* file_number */, "201" /* smallest */,
"250" /* largest */, 900000000U /* file_size */);
Add(2 /* level */, 4U /* file_number */, "100" /* smallest */,
"150" /* largest */, 1U /* file_size */);
Add(2 /* level */, 5U /* file_number */, "151" /* smallest */,
"200" /* largest */, 1U /* file_size */);
Add(2 /* level */, 6U /* file_number */, "201" /* smallest */,
"250" /* largest */, 1U /* file_size */);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(2U, compaction->num_input_levels());
ASSERT_EQ(1U, compaction->num_input_files(0));
ASSERT_EQ(1U, compaction->num_input_files(1));
ASSERT_EQ(3U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(6U, compaction->input(1, 0)->fd.GetNumber());
}
TEST_F(CompactionPickerTest, OverlappingUserKeys11) {
// Locked file encountered when pulling in extra output-level files with same
// user keys. Expected to skip that compaction and pick the next-best choice.
NewVersionStorage(6, kCompactionStyleLevel);
mutable_cf_options_.max_compaction_bytes = 100000000000u;
// score(L1) = 3.7
// score(L2) = 1.85
// There is no eligible file in L1 to compact since both candidates pull in
// file_number 5U, which overlaps with a file pending compaction (6U). The
// first eligible compaction is from L2->L3.
Add(1 /* level */, 2U /* file_number */, "151" /* smallest */,
"200" /* largest */, 1000000000U /* file_size */);
Add(1 /* level */, 3U /* file_number */, "201" /* smallest */,
"250" /* largest */, 1U /* file_size */);
Add(2 /* level */, 4U /* file_number */, "100" /* smallest */,
"149" /* largest */, 5000000000U /* file_size */);
Add(2 /* level */, 5U /* file_number */, "150" /* smallest */,
"201" /* largest */, 1U /* file_size */);
Add(2 /* level */, 6U /* file_number */, "201" /* smallest */,
"249" /* largest */, 1U /* file_size */, 0 /* smallest_seq */,
0 /* largest_seq */);
file_map_[6U].first->being_compacted = true;
Add(3 /* level */, 7U /* file_number */, "100" /* smallest */,
"149" /* largest */, 1U /* file_size */);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(2U, compaction->num_input_levels());
ASSERT_EQ(1U, compaction->num_input_files(0));
ASSERT_EQ(1U, compaction->num_input_files(1));
ASSERT_EQ(4U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(7U, compaction->input(1, 0)->fd.GetNumber());
}
TEST_F(CompactionPickerTest, NotScheduleL1IfL0WithHigherPri1) {
NewVersionStorage(6, kCompactionStyleLevel);
mutable_cf_options_.level0_file_num_compaction_trigger = 2;
mutable_cf_options_.max_bytes_for_level_base = 900000000U;
// 6 L0 files, score 3.
Add(0, 1U, "000", "400", 1U);
Add(0, 2U, "001", "400", 1U, 0, 0);
Add(0, 3U, "001", "400", 1000000000U, 0, 0);
Add(0, 31U, "001", "400", 1000000000U, 0, 0);
Add(0, 32U, "001", "400", 1000000000U, 0, 0);
Add(0, 33U, "001", "400", 1000000000U, 0, 0);
// L1 total size 2GB, score 2.2. If one file being comapcted, score 1.1.
Add(1, 4U, "050", "300", 1000000000U, 0, 0);
file_map_[4u].first->being_compacted = true;
Add(1, 5U, "301", "350", 1000000000U, 0, 0);
// Output level overlaps with the beginning and the end of the chain
Add(2, 6U, "050", "100", 1U);
Add(2, 7U, "300", "400", 1U);
// No compaction should be scheduled, if L0 has higher priority than L1
// but L0->L1 compaction is blocked by a file in L1 being compacted.
UpdateVersionStorageInfo();
ASSERT_EQ(0, vstorage_->CompactionScoreLevel(0));
ASSERT_EQ(1, vstorage_->CompactionScoreLevel(1));
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() == nullptr);
}
TEST_F(CompactionPickerTest, NotScheduleL1IfL0WithHigherPri2) {
NewVersionStorage(6, kCompactionStyleLevel);
mutable_cf_options_.level0_file_num_compaction_trigger = 2;
mutable_cf_options_.max_bytes_for_level_base = 900000000U;
// 6 L0 files, score 3.
Add(0, 1U, "000", "400", 1U);
Add(0, 2U, "001", "400", 1U, 0, 0);
Add(0, 3U, "001", "400", 1000000000U, 0, 0);
Add(0, 31U, "001", "400", 1000000000U, 0, 0);
Add(0, 32U, "001", "400", 1000000000U, 0, 0);
Add(0, 33U, "001", "400", 1000000000U, 0, 0);
// L1 total size 2GB, score 2.2. If one file being comapcted, score 1.1.
Add(1, 4U, "050", "300", 1000000000U, 0, 0);
Add(1, 5U, "301", "350", 1000000000U, 0, 0);
// Output level overlaps with the beginning and the end of the chain
Add(2, 6U, "050", "100", 1U);
Add(2, 7U, "300", "400", 1U);
// If no file in L1 being compacted, L0->L1 compaction will be scheduled.
UpdateVersionStorageInfo(); // being_compacted flag is cleared here.
ASSERT_EQ(0, vstorage_->CompactionScoreLevel(0));
ASSERT_EQ(1, vstorage_->CompactionScoreLevel(1));
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
}
TEST_F(CompactionPickerTest, NotScheduleL1IfL0WithHigherPri3) {
NewVersionStorage(6, kCompactionStyleLevel);
mutable_cf_options_.level0_file_num_compaction_trigger = 2;
mutable_cf_options_.max_bytes_for_level_base = 900000000U;
// 6 L0 files, score 3.
Add(0, 1U, "000", "400", 1U);
Add(0, 2U, "001", "400", 1U, 0, 0);
Add(0, 3U, "001", "400", 1000000000U, 0, 0);
Add(0, 31U, "001", "400", 1000000000U, 0, 0);
Add(0, 32U, "001", "400", 1000000000U, 0, 0);
Add(0, 33U, "001", "400", 1000000000U, 0, 0);
// L1 score more than 6.
Add(1, 4U, "050", "300", 1000000000U, 0, 0);
file_map_[4u].first->being_compacted = true;
Add(1, 5U, "301", "350", 1000000000U, 0, 0);
Add(1, 51U, "351", "400", 6000000000U, 0, 0);
// Output level overlaps with the beginning and the end of the chain
Add(2, 6U, "050", "100", 1U);
Add(2, 7U, "300", "400", 1U);
// If score in L1 is larger than L0, L1 compaction goes through despite
// there is pending L0 compaction.
UpdateVersionStorageInfo();
ASSERT_EQ(1, vstorage_->CompactionScoreLevel(0));
ASSERT_EQ(0, vstorage_->CompactionScoreLevel(1));
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
}
TEST_F(CompactionPickerTest, EstimateCompactionBytesNeeded1) {
int num_levels = ioptions_.num_levels;
ioptions_.level_compaction_dynamic_level_bytes = false;
mutable_cf_options_.level0_file_num_compaction_trigger = 4;
mutable_cf_options_.max_bytes_for_level_base = 1000;
mutable_cf_options_.max_bytes_for_level_multiplier = 10;
NewVersionStorage(num_levels, kCompactionStyleLevel);
Add(0, 1U, "150", "200", 200);
Add(0, 2U, "150", "200", 200);
Add(0, 3U, "150", "200", 200);
// Level 1 is over target by 200
Add(1, 4U, "400", "500", 600);
Add(1, 5U, "600", "700", 600);
// Level 2 is less than target 10000 even added size of level 1
// Size ratio of L2/L1 is 9600 / 1200 = 8
Add(2, 6U, "150", "200", 2500);
Add(2, 7U, "201", "210", 2000);
Add(2, 8U, "300", "310", 2600);
Add(2, 9U, "400", "500", 2500);
// Level 3 exceeds target 100,000 of 1000
Add(3, 10U, "400", "500", 101000);
// Level 4 exceeds target 1,000,000 by 900 after adding size from level 3
// Size ratio L4/L3 is 9.9
// After merge from L3, L4 size is 1000900
Add(4, 11U, "400", "500", 999900);
Add(5, 11U, "400", "500", 8007200);
UpdateVersionStorageInfo();
ASSERT_EQ(200u * 9u + 10900u + 900u * 9,
vstorage_->estimated_compaction_needed_bytes());
}
TEST_F(CompactionPickerTest, EstimateCompactionBytesNeeded2) {
int num_levels = ioptions_.num_levels;
ioptions_.level_compaction_dynamic_level_bytes = false;
mutable_cf_options_.level0_file_num_compaction_trigger = 3;
mutable_cf_options_.max_bytes_for_level_base = 1000;
mutable_cf_options_.max_bytes_for_level_multiplier = 10;
NewVersionStorage(num_levels, kCompactionStyleLevel);
Add(0, 1U, "150", "200", 200);
Add(0, 2U, "150", "200", 200);
Add(0, 4U, "150", "200", 200);
Add(0, 5U, "150", "200", 200);
Add(0, 6U, "150", "200", 200);
// Level 1 size will be 1400 after merging with L0
Add(1, 7U, "400", "500", 200);
Add(1, 8U, "600", "700", 200);
// Level 2 is less than target 10000 even added size of level 1
Add(2, 9U, "150", "200", 9100);
// Level 3 over the target, but since level 4 is empty, we assume it will be
// a trivial move.
Add(3, 10U, "400", "500", 101000);
UpdateVersionStorageInfo();
// estimated L1->L2 merge: 400 * (9100.0 / 1400.0 + 1.0)
ASSERT_EQ(1400u + 3000u, vstorage_->estimated_compaction_needed_bytes());
}
TEST_F(CompactionPickerTest, EstimateCompactionBytesNeeded3) {
int num_levels = ioptions_.num_levels;
ioptions_.level_compaction_dynamic_level_bytes = false;
mutable_cf_options_.level0_file_num_compaction_trigger = 3;
mutable_cf_options_.max_bytes_for_level_base = 1000;
mutable_cf_options_.max_bytes_for_level_multiplier = 10;
NewVersionStorage(num_levels, kCompactionStyleLevel);
Add(0, 1U, "150", "200", 2000);
Add(0, 2U, "150", "200", 2000);
Add(0, 4U, "150", "200", 2000);
Add(0, 5U, "150", "200", 2000);
Add(0, 6U, "150", "200", 1000);
// Level 1 size will be 10000 after merging with L0
Add(1, 7U, "400", "500", 500);
Add(1, 8U, "600", "700", 500);
Add(2, 9U, "150", "200", 10000);
UpdateVersionStorageInfo();
ASSERT_EQ(10000u + 18000u, vstorage_->estimated_compaction_needed_bytes());
}
TEST_F(CompactionPickerTest, EstimateCompactionBytesNeededDynamicLevel) {
int num_levels = ioptions_.num_levels;
ioptions_.level_compaction_dynamic_level_bytes = true;
mutable_cf_options_.level0_file_num_compaction_trigger = 3;
mutable_cf_options_.max_bytes_for_level_base = 1000;
mutable_cf_options_.max_bytes_for_level_multiplier = 10;
NewVersionStorage(num_levels, kCompactionStyleLevel);
// Set Last level size 50000
// num_levels - 1 target 5000
// num_levels - 2 is base level with target 1000 (rounded up to
// max_bytes_for_level_base).
Add(num_levels - 1, 10U, "400", "500", 50000);
Add(0, 1U, "150", "200", 200);
Add(0, 2U, "150", "200", 200);
Add(0, 4U, "150", "200", 200);
Add(0, 5U, "150", "200", 200);
Add(0, 6U, "150", "200", 200);
// num_levels - 3 is over target by 100 + 1000
Add(num_levels - 3, 7U, "400", "500", 550);
Add(num_levels - 3, 8U, "600", "700", 550);
// num_levels - 2 is over target by 1100 + 200
Add(num_levels - 2, 9U, "150", "200", 5200);
UpdateVersionStorageInfo();
// Merging to the second last level: (5200 / 2100 + 1) * 1100
// Merging to the last level: (50000 / 6300 + 1) * 1300
ASSERT_EQ(2100u + 3823u + 11617u,
vstorage_->estimated_compaction_needed_bytes());
}
TEST_F(CompactionPickerTest, IsBottommostLevelTest) {
// case 1: Higher levels are empty
NewVersionStorage(6, kCompactionStyleLevel);
Add(0, 1U, "a", "m");
Add(0, 2U, "c", "z");
Add(1, 3U, "d", "e");
Add(1, 4U, "l", "p");
Add(2, 5U, "g", "i");
Add(2, 6U, "x", "z");
UpdateVersionStorageInfo();
SetCompactionInputFilesLevels(2, 1);
AddToCompactionFiles(3U);
AddToCompactionFiles(5U);
bool result =
Compaction::TEST_IsBottommostLevel(2, vstorage_.get(), input_files_);
ASSERT_TRUE(result);
// case 2: Higher levels have no overlap
NewVersionStorage(6, kCompactionStyleLevel);
Add(0, 1U, "a", "m");
Add(0, 2U, "c", "z");
Add(1, 3U, "d", "e");
Add(1, 4U, "l", "p");
Add(2, 5U, "g", "i");
Add(2, 6U, "x", "z");
Add(3, 7U, "k", "p");
Add(3, 8U, "t", "w");
Add(4, 9U, "a", "b");
Add(5, 10U, "c", "cc");
UpdateVersionStorageInfo();
SetCompactionInputFilesLevels(2, 1);
AddToCompactionFiles(3U);
AddToCompactionFiles(5U);
result = Compaction::TEST_IsBottommostLevel(2, vstorage_.get(), input_files_);
ASSERT_TRUE(result);
// case 3.1: Higher levels (level 3) have overlap
NewVersionStorage(6, kCompactionStyleLevel);
Add(0, 1U, "a", "m");
Add(0, 2U, "c", "z");
Add(1, 3U, "d", "e");
Add(1, 4U, "l", "p");
Add(2, 5U, "g", "i");
Add(2, 6U, "x", "z");
Add(3, 7U, "e", "g");
Add(3, 8U, "h", "k");
Add(4, 9U, "a", "b");
Add(5, 10U, "c", "cc");
UpdateVersionStorageInfo();
SetCompactionInputFilesLevels(2, 1);
AddToCompactionFiles(3U);
AddToCompactionFiles(5U);
result = Compaction::TEST_IsBottommostLevel(2, vstorage_.get(), input_files_);
ASSERT_FALSE(result);
// case 3.2: Higher levels (level 5) have overlap
DeleteVersionStorage();
NewVersionStorage(6, kCompactionStyleLevel);
Add(0, 1U, "a", "m");
Add(0, 2U, "c", "z");
Add(1, 3U, "d", "e");
Add(1, 4U, "l", "p");
Add(2, 5U, "g", "i");
Add(2, 6U, "x", "z");
Add(3, 7U, "j", "k");
Add(3, 8U, "l", "m");
Add(4, 9U, "a", "b");
Add(5, 10U, "c", "cc");
Add(5, 11U, "h", "k");
Add(5, 12U, "y", "yy");
Add(5, 13U, "z", "zz");
UpdateVersionStorageInfo();
SetCompactionInputFilesLevels(2, 1);
AddToCompactionFiles(3U);
AddToCompactionFiles(5U);
result = Compaction::TEST_IsBottommostLevel(2, vstorage_.get(), input_files_);
ASSERT_FALSE(result);
// case 3.3: Higher levels (level 5) have overlap, but it's only overlapping
// one key ("d")
NewVersionStorage(6, kCompactionStyleLevel);
Add(0, 1U, "a", "m");
Add(0, 2U, "c", "z");
Add(1, 3U, "d", "e");
Add(1, 4U, "l", "p");
Add(2, 5U, "g", "i");
Add(2, 6U, "x", "z");
Add(3, 7U, "j", "k");
Add(3, 8U, "l", "m");
Add(4, 9U, "a", "b");
Add(5, 10U, "c", "cc");
Add(5, 11U, "ccc", "d");
Add(5, 12U, "y", "yy");
Add(5, 13U, "z", "zz");
UpdateVersionStorageInfo();
SetCompactionInputFilesLevels(2, 1);
AddToCompactionFiles(3U);
AddToCompactionFiles(5U);
result = Compaction::TEST_IsBottommostLevel(2, vstorage_.get(), input_files_);
ASSERT_FALSE(result);
// Level 0 files overlap
NewVersionStorage(6, kCompactionStyleLevel);
Add(0, 1U, "s", "t");
Add(0, 2U, "a", "m");
Add(0, 3U, "b", "z");
Add(0, 4U, "e", "f");
Add(5, 10U, "y", "z");
UpdateVersionStorageInfo();
SetCompactionInputFilesLevels(1, 0);
AddToCompactionFiles(1U);
AddToCompactionFiles(2U);
AddToCompactionFiles(3U);
AddToCompactionFiles(4U);
result = Compaction::TEST_IsBottommostLevel(2, vstorage_.get(), input_files_);
ASSERT_FALSE(result);
// Level 0 files don't overlap
NewVersionStorage(6, kCompactionStyleLevel);
Add(0, 1U, "s", "t");
Add(0, 2U, "a", "m");
Add(0, 3U, "b", "k");
Add(0, 4U, "e", "f");
Add(5, 10U, "y", "z");
UpdateVersionStorageInfo();
SetCompactionInputFilesLevels(1, 0);
AddToCompactionFiles(1U);
AddToCompactionFiles(2U);
AddToCompactionFiles(3U);
AddToCompactionFiles(4U);
result = Compaction::TEST_IsBottommostLevel(2, vstorage_.get(), input_files_);
ASSERT_TRUE(result);
// Level 1 files overlap
NewVersionStorage(6, kCompactionStyleLevel);
Add(0, 1U, "s", "t");
Add(0, 2U, "a", "m");
Add(0, 3U, "b", "k");
Add(0, 4U, "e", "f");
Add(1, 5U, "a", "m");
Add(1, 6U, "n", "o");
Add(1, 7U, "w", "y");
Add(5, 10U, "y", "z");
UpdateVersionStorageInfo();
SetCompactionInputFilesLevels(2, 0);
AddToCompactionFiles(1U);
AddToCompactionFiles(2U);
AddToCompactionFiles(3U);
AddToCompactionFiles(4U);
AddToCompactionFiles(5U);
AddToCompactionFiles(6U);
AddToCompactionFiles(7U);
result = Compaction::TEST_IsBottommostLevel(2, vstorage_.get(), input_files_);
ASSERT_FALSE(result);
DeleteVersionStorage();
}
TEST_F(CompactionPickerTest, MaxCompactionBytesHit) {
mutable_cf_options_.max_bytes_for_level_base = 1000000u;
mutable_cf_options_.max_compaction_bytes = 800000u;
ioptions_.level_compaction_dynamic_level_bytes = false;
NewVersionStorage(6, kCompactionStyleLevel);
// A compaction should be triggered and pick file 2 and 5.
// It can expand because adding file 1 and 3, the compaction size will
// exceed mutable_cf_options_.max_bytes_for_level_base.
Add(1, 1U, "100", "150", 300000U);
Add(1, 2U, "151", "200", 300001U, 0, 0);
Add(1, 3U, "201", "250", 300000U, 0, 0);
Add(1, 4U, "251", "300", 300000U, 0, 0);
Add(2, 5U, "100", "256", 1U);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(2U, compaction->num_input_levels());
ASSERT_EQ(1U, compaction->num_input_files(0));
ASSERT_EQ(1U, compaction->num_input_files(1));
ASSERT_EQ(2U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(5U, compaction->input(1, 0)->fd.GetNumber());
}
TEST_F(CompactionPickerTest, MaxCompactionBytesNotHit) {
mutable_cf_options_.max_bytes_for_level_base = 800000u;
mutable_cf_options_.max_compaction_bytes = 1000000u;
ioptions_.level_compaction_dynamic_level_bytes = false;
NewVersionStorage(6, kCompactionStyleLevel);
// A compaction should be triggered and pick file 2 and 5.
// and it expands to file 1 and 3 too.
Add(1, 1U, "100", "150", 300000U);
Add(1, 2U, "151", "200", 300001U, 0, 0);
Add(1, 3U, "201", "250", 300000U, 0, 0);
Add(1, 4U, "251", "300", 300000U, 0, 0);
Add(2, 5U, "000", "251", 1U);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(2U, compaction->num_input_levels());
ASSERT_EQ(3U, compaction->num_input_files(0));
ASSERT_EQ(1U, compaction->num_input_files(1));
ASSERT_EQ(1U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(2U, compaction->input(0, 1)->fd.GetNumber());
ASSERT_EQ(3U, compaction->input(0, 2)->fd.GetNumber());
ASSERT_EQ(5U, compaction->input(1, 0)->fd.GetNumber());
}
TEST_F(CompactionPickerTest, IsTrivialMoveOn) {
mutable_cf_options_.max_bytes_for_level_base = 10000u;
mutable_cf_options_.max_compaction_bytes = 10001u;
ioptions_.level_compaction_dynamic_level_bytes = false;
NewVersionStorage(6, kCompactionStyleLevel);
// A compaction should be triggered and pick file 2
Add(1, 1U, "100", "150", 3000U);
Add(1, 2U, "151", "200", 3001U);
Add(1, 3U, "201", "250", 3000U);
Add(1, 4U, "251", "300", 3000U);
Add(3, 5U, "120", "130", 7000U);
Add(3, 6U, "170", "180", 7000U);
Add(3, 5U, "220", "230", 7000U);
Add(3, 5U, "270", "280", 7000U);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_TRUE(compaction->IsTrivialMove());
}
TEST_F(CompactionPickerTest, IsTrivialMoveOff) {
mutable_cf_options_.max_bytes_for_level_base = 1000000u;
mutable_cf_options_.max_compaction_bytes = 10000u;
ioptions_.level_compaction_dynamic_level_bytes = false;
NewVersionStorage(6, kCompactionStyleLevel);
// A compaction should be triggered and pick all files from level 1
Add(1, 1U, "100", "150", 300000U, 0, 0);
Add(1, 2U, "150", "200", 300000U, 0, 0);
Add(1, 3U, "200", "250", 300000U, 0, 0);
Add(1, 4U, "250", "300", 300000U, 0, 0);
Add(3, 5U, "120", "130", 6000U);
Add(3, 6U, "140", "150", 6000U);
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_FALSE(compaction->IsTrivialMove());
}
TEST_F(CompactionPickerTest, CacheNextCompactionIndex) {
NewVersionStorage(6, kCompactionStyleLevel);
mutable_cf_options_.max_compaction_bytes = 100000000000u;
Add(1 /* level */, 1U /* file_number */, "100" /* smallest */,
"149" /* largest */, 1000000000U /* file_size */);
file_map_[1U].first->being_compacted = true;
Add(1 /* level */, 2U /* file_number */, "150" /* smallest */,
"199" /* largest */, 900000000U /* file_size */);
Add(1 /* level */, 3U /* file_number */, "200" /* smallest */,
"249" /* largest */, 800000000U /* file_size */);
Add(1 /* level */, 4U /* file_number */, "250" /* smallest */,
"299" /* largest */, 700000000U /* file_size */);
Add(2 /* level */, 5U /* file_number */, "150" /* smallest */,
"199" /* largest */, 1U /* file_size */);
file_map_[5U].first->being_compacted = true;
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(1U, compaction->num_input_levels());
ASSERT_EQ(1U, compaction->num_input_files(0));
ASSERT_EQ(0U, compaction->num_input_files(1));
ASSERT_EQ(3U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(2, vstorage_->NextCompactionIndex(1 /* level */));
compaction.reset(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(1U, compaction->num_input_levels());
ASSERT_EQ(1U, compaction->num_input_files(0));
ASSERT_EQ(0U, compaction->num_input_files(1));
ASSERT_EQ(4U, compaction->input(0, 0)->fd.GetNumber());
ASSERT_EQ(3, vstorage_->NextCompactionIndex(1 /* level */));
compaction.reset(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() == nullptr);
ASSERT_EQ(4, vstorage_->NextCompactionIndex(1 /* level */));
}
TEST_F(CompactionPickerTest, IntraL0MaxCompactionBytesNotHit) {
// Intra L0 compaction triggers only if there are at least
// level0_file_num_compaction_trigger + 2 L0 files.
mutable_cf_options_.level0_file_num_compaction_trigger = 3;
mutable_cf_options_.max_compaction_bytes = 1000000u;
NewVersionStorage(6, kCompactionStyleLevel);
// All 5 L0 files will be picked for intra L0 compaction. The one L1 file
// spans entire L0 key range and is marked as being compacted to avoid
// L0->L1 compaction.
Fix corruption with intra-L0 on ingested files (#5958) Summary: ## Problem Description Our process was abort when it call `CheckConsistency`. And the information in `stderr` show that "`L0 files seqno 3001491972 3004797440 vs. 3002875611 3004524421` ". Here are the causes of the accident I investigated. * RocksDB will call `CheckConsistency` whenever `MANIFEST` file is update. It will check sequence number interval of every file, except files which were ingested. * When one file is ingested into RocksDB, it will be assigned the value of global sequence number, and the minimum and maximum seqno of this file are equal, which are both equal to global sequence number. * `CheckConsistency` determines whether the file is ingested by whether the smallest and largest seqno of an sstable file are equal. * If IntraL0Compaction picks one sst which was ingested just now and compacted it into another sst, the `smallest_seqno` of this new file will be smaller than his `largest_seqno`. * If more than one ingested file was ingested before memtable schedule flush, and they all compact into one new sstable file by `IntraL0Compaction`. The sequence interval of this new file will be included in the interval of the memtable. So `CheckConsistency` will return a `Corruption`. * If a sstable was ingested after the memtable was schedule to flush, which would assign a larger seqno to it than memtable. Then the file was compacted with other files (these files were all flushed before the memtable) in L0 into one file. This compaction start before the flush job of memtable start, but completed after the flush job finish. So this new file produced by the compaction (we call it s1) would have a larger interval of sequence number than the file produced by flush (we call it s2). **But there was still some data in s1 written into RocksDB before the s2, so it's possible that some data in s2 was cover by old data in s1.** Of course, it would also make a `Corruption` because of overlap of seqno. There is the relationship of the files: > s1.smallest_seqno < s2.smallest_seqno < s2.largest_seqno < s1.largest_seqno So I skip pick sst file which was ingested in function `FindIntraL0Compaction ` ## Reason Here is my bug report: https://github.com/facebook/rocksdb/issues/5913 There are two situations that can cause the check to fail. ### First situation: - First we ingest five external sst into Rocksdb, and they happened to be ingested in L0. and there had been some data in memtable, which make the smallest sequence number of memtable is less than which of sst that we ingest. - If there had been one compaction job which compacted sst from L0 to L1, `LevelCompactionPicker` would trigger a `IntraL0Compaction` which would compact this five sst from L0 to L0. We call this sst A, which was merged from five ingested sst. - Then some data was put into memtable, and memtable was flushed to L0. We called this sst B. - RocksDB check consistency , and find the `smallest_seqno` of B is less than that of A and crash. Because A was merged from five sst, the smallest sequence number of it was less than the biggest sequece number of itself, so RocksDB could not tell if A was produce by ingested. ### Secondary situaion - First we have flushed many sst in L0, we call them [s1, s2, s3]. - There is an immutable memtable request to be flushed, but because flush thread is busy, so it has not been picked. we call it m1. And at the moment, one sst is ingested into L0. We call it s4. Because s4 is ingested after m1 became immutable memtable, so it has a larger log sequence number than m1. - m1 is flushed in L0. because it is small, this flush job finish quickly. we call it s5. - [s1, s2, s3, s4] are compacted into one sst to L0, by IntraL0Compaction. We call it s6. - compacted 4@0 files to L0 - When s6 is added into manifest, the corruption happened. because the largest sequence number of s6 is equal to s4, and they are both larger than that of s5. But because s1 is older than m1, so the smallest sequence number of s6 is smaller than that of s5. - s6.smallest_seqno < s5.smallest_seqno < s5.largest_seqno < s6.largest_seqno Pull Request resolved: https://github.com/facebook/rocksdb/pull/5958 Differential Revision: D18601316 fbshipit-source-id: 5fe54b3c9af52a2e1400728f565e895cde1c7267
2019-11-20 00:07:49 +01:00
Add(0, 1U, "100", "150", 200000U, 0, 100, 101);
Add(0, 2U, "151", "200", 200000U, 0, 102, 103);
Add(0, 3U, "201", "250", 200000U, 0, 104, 105);
Add(0, 4U, "251", "300", 200000U, 0, 106, 107);
Add(0, 5U, "301", "350", 200000U, 0, 108, 109);
Add(1, 6U, "100", "350", 200000U, 0, 110, 111);
vstorage_->LevelFiles(1)[0]->being_compacted = true;
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(1U, compaction->num_input_levels());
ASSERT_EQ(5U, compaction->num_input_files(0));
ASSERT_EQ(CompactionReason::kLevelL0FilesNum,
compaction->compaction_reason());
ASSERT_EQ(0, compaction->output_level());
}
TEST_F(CompactionPickerTest, IntraL0MaxCompactionBytesHit) {
// Intra L0 compaction triggers only if there are at least
// level0_file_num_compaction_trigger + 2 L0 files.
mutable_cf_options_.level0_file_num_compaction_trigger = 3;
mutable_cf_options_.max_compaction_bytes = 999999u;
NewVersionStorage(6, kCompactionStyleLevel);
// 4 out of 5 L0 files will be picked for intra L0 compaction due to
// max_compaction_bytes limit (the minimum number of files for triggering
// intra L0 compaction is 4). The one L1 file spans entire L0 key range and
// is marked as being compacted to avoid L0->L1 compaction.
Fix corruption with intra-L0 on ingested files (#5958) Summary: ## Problem Description Our process was abort when it call `CheckConsistency`. And the information in `stderr` show that "`L0 files seqno 3001491972 3004797440 vs. 3002875611 3004524421` ". Here are the causes of the accident I investigated. * RocksDB will call `CheckConsistency` whenever `MANIFEST` file is update. It will check sequence number interval of every file, except files which were ingested. * When one file is ingested into RocksDB, it will be assigned the value of global sequence number, and the minimum and maximum seqno of this file are equal, which are both equal to global sequence number. * `CheckConsistency` determines whether the file is ingested by whether the smallest and largest seqno of an sstable file are equal. * If IntraL0Compaction picks one sst which was ingested just now and compacted it into another sst, the `smallest_seqno` of this new file will be smaller than his `largest_seqno`. * If more than one ingested file was ingested before memtable schedule flush, and they all compact into one new sstable file by `IntraL0Compaction`. The sequence interval of this new file will be included in the interval of the memtable. So `CheckConsistency` will return a `Corruption`. * If a sstable was ingested after the memtable was schedule to flush, which would assign a larger seqno to it than memtable. Then the file was compacted with other files (these files were all flushed before the memtable) in L0 into one file. This compaction start before the flush job of memtable start, but completed after the flush job finish. So this new file produced by the compaction (we call it s1) would have a larger interval of sequence number than the file produced by flush (we call it s2). **But there was still some data in s1 written into RocksDB before the s2, so it's possible that some data in s2 was cover by old data in s1.** Of course, it would also make a `Corruption` because of overlap of seqno. There is the relationship of the files: > s1.smallest_seqno < s2.smallest_seqno < s2.largest_seqno < s1.largest_seqno So I skip pick sst file which was ingested in function `FindIntraL0Compaction ` ## Reason Here is my bug report: https://github.com/facebook/rocksdb/issues/5913 There are two situations that can cause the check to fail. ### First situation: - First we ingest five external sst into Rocksdb, and they happened to be ingested in L0. and there had been some data in memtable, which make the smallest sequence number of memtable is less than which of sst that we ingest. - If there had been one compaction job which compacted sst from L0 to L1, `LevelCompactionPicker` would trigger a `IntraL0Compaction` which would compact this five sst from L0 to L0. We call this sst A, which was merged from five ingested sst. - Then some data was put into memtable, and memtable was flushed to L0. We called this sst B. - RocksDB check consistency , and find the `smallest_seqno` of B is less than that of A and crash. Because A was merged from five sst, the smallest sequence number of it was less than the biggest sequece number of itself, so RocksDB could not tell if A was produce by ingested. ### Secondary situaion - First we have flushed many sst in L0, we call them [s1, s2, s3]. - There is an immutable memtable request to be flushed, but because flush thread is busy, so it has not been picked. we call it m1. And at the moment, one sst is ingested into L0. We call it s4. Because s4 is ingested after m1 became immutable memtable, so it has a larger log sequence number than m1. - m1 is flushed in L0. because it is small, this flush job finish quickly. we call it s5. - [s1, s2, s3, s4] are compacted into one sst to L0, by IntraL0Compaction. We call it s6. - compacted 4@0 files to L0 - When s6 is added into manifest, the corruption happened. because the largest sequence number of s6 is equal to s4, and they are both larger than that of s5. But because s1 is older than m1, so the smallest sequence number of s6 is smaller than that of s5. - s6.smallest_seqno < s5.smallest_seqno < s5.largest_seqno < s6.largest_seqno Pull Request resolved: https://github.com/facebook/rocksdb/pull/5958 Differential Revision: D18601316 fbshipit-source-id: 5fe54b3c9af52a2e1400728f565e895cde1c7267
2019-11-20 00:07:49 +01:00
Add(0, 1U, "100", "150", 200000U, 0, 100, 101);
Add(0, 2U, "151", "200", 200000U, 0, 102, 103);
Add(0, 3U, "201", "250", 200000U, 0, 104, 105);
Add(0, 4U, "251", "300", 200000U, 0, 106, 107);
Add(0, 5U, "301", "350", 200000U, 0, 108, 109);
Add(1, 6U, "100", "350", 200000U, 0, 109, 110);
vstorage_->LevelFiles(1)[0]->being_compacted = true;
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(1U, compaction->num_input_levels());
ASSERT_EQ(4U, compaction->num_input_files(0));
ASSERT_EQ(CompactionReason::kLevelL0FilesNum,
compaction->compaction_reason());
ASSERT_EQ(0, compaction->output_level());
}
Fix corruption with intra-L0 on ingested files (#5958) Summary: ## Problem Description Our process was abort when it call `CheckConsistency`. And the information in `stderr` show that "`L0 files seqno 3001491972 3004797440 vs. 3002875611 3004524421` ". Here are the causes of the accident I investigated. * RocksDB will call `CheckConsistency` whenever `MANIFEST` file is update. It will check sequence number interval of every file, except files which were ingested. * When one file is ingested into RocksDB, it will be assigned the value of global sequence number, and the minimum and maximum seqno of this file are equal, which are both equal to global sequence number. * `CheckConsistency` determines whether the file is ingested by whether the smallest and largest seqno of an sstable file are equal. * If IntraL0Compaction picks one sst which was ingested just now and compacted it into another sst, the `smallest_seqno` of this new file will be smaller than his `largest_seqno`. * If more than one ingested file was ingested before memtable schedule flush, and they all compact into one new sstable file by `IntraL0Compaction`. The sequence interval of this new file will be included in the interval of the memtable. So `CheckConsistency` will return a `Corruption`. * If a sstable was ingested after the memtable was schedule to flush, which would assign a larger seqno to it than memtable. Then the file was compacted with other files (these files were all flushed before the memtable) in L0 into one file. This compaction start before the flush job of memtable start, but completed after the flush job finish. So this new file produced by the compaction (we call it s1) would have a larger interval of sequence number than the file produced by flush (we call it s2). **But there was still some data in s1 written into RocksDB before the s2, so it's possible that some data in s2 was cover by old data in s1.** Of course, it would also make a `Corruption` because of overlap of seqno. There is the relationship of the files: > s1.smallest_seqno < s2.smallest_seqno < s2.largest_seqno < s1.largest_seqno So I skip pick sst file which was ingested in function `FindIntraL0Compaction ` ## Reason Here is my bug report: https://github.com/facebook/rocksdb/issues/5913 There are two situations that can cause the check to fail. ### First situation: - First we ingest five external sst into Rocksdb, and they happened to be ingested in L0. and there had been some data in memtable, which make the smallest sequence number of memtable is less than which of sst that we ingest. - If there had been one compaction job which compacted sst from L0 to L1, `LevelCompactionPicker` would trigger a `IntraL0Compaction` which would compact this five sst from L0 to L0. We call this sst A, which was merged from five ingested sst. - Then some data was put into memtable, and memtable was flushed to L0. We called this sst B. - RocksDB check consistency , and find the `smallest_seqno` of B is less than that of A and crash. Because A was merged from five sst, the smallest sequence number of it was less than the biggest sequece number of itself, so RocksDB could not tell if A was produce by ingested. ### Secondary situaion - First we have flushed many sst in L0, we call them [s1, s2, s3]. - There is an immutable memtable request to be flushed, but because flush thread is busy, so it has not been picked. we call it m1. And at the moment, one sst is ingested into L0. We call it s4. Because s4 is ingested after m1 became immutable memtable, so it has a larger log sequence number than m1. - m1 is flushed in L0. because it is small, this flush job finish quickly. we call it s5. - [s1, s2, s3, s4] are compacted into one sst to L0, by IntraL0Compaction. We call it s6. - compacted 4@0 files to L0 - When s6 is added into manifest, the corruption happened. because the largest sequence number of s6 is equal to s4, and they are both larger than that of s5. But because s1 is older than m1, so the smallest sequence number of s6 is smaller than that of s5. - s6.smallest_seqno < s5.smallest_seqno < s5.largest_seqno < s6.largest_seqno Pull Request resolved: https://github.com/facebook/rocksdb/pull/5958 Differential Revision: D18601316 fbshipit-source-id: 5fe54b3c9af52a2e1400728f565e895cde1c7267
2019-11-20 00:07:49 +01:00
TEST_F(CompactionPickerTest, IntraL0ForEarliestSeqno) {
// Intra L0 compaction triggers only if there are at least
// level0_file_num_compaction_trigger + 2 L0 files.
mutable_cf_options_.level0_file_num_compaction_trigger = 3;
mutable_cf_options_.max_compaction_bytes = 999999u;
NewVersionStorage(6, kCompactionStyleLevel);
// 4 out of 6 L0 files will be picked for intra L0 compaction due to
// being_compact limit. And the latest one L0 will be skipped due to earliest
// seqno. The one L1 file spans entire L0 key range and is marked as being
// compacted to avoid L0->L1 compaction.
Add(1, 1U, "100", "350", 200000U, 0, 110, 111);
Add(0, 2U, "301", "350", 1U, 0, 108, 109);
Add(0, 3U, "251", "300", 1U, 0, 106, 107);
Add(0, 4U, "201", "250", 1U, 0, 104, 105);
Add(0, 5U, "151", "200", 1U, 0, 102, 103);
Add(0, 6U, "100", "150", 1U, 0, 100, 101);
Add(0, 7U, "100", "100", 1U, 0, 99, 100);
vstorage_->LevelFiles(0)[5]->being_compacted = true;
vstorage_->LevelFiles(1)[0]->being_compacted = true;
UpdateVersionStorageInfo();
std::unique_ptr<Compaction> compaction(level_compaction_picker.PickCompaction(
cf_name_, mutable_cf_options_, vstorage_.get(), &log_buffer_, 107));
ASSERT_TRUE(compaction.get() != nullptr);
ASSERT_EQ(1U, compaction->num_input_levels());
ASSERT_EQ(4U, compaction->num_input_files(0));
ASSERT_EQ(CompactionReason::kLevelL0FilesNum,
compaction->compaction_reason());
ASSERT_EQ(0, compaction->output_level());
}
} // namespace rocksdb
rocksdb: switch to gtest Summary: Our existing test notation is very similar to what is used in gtest. It makes it easy to adopt what is different. In this diff I modify existing [[ https://code.google.com/p/googletest/wiki/Primer#Test_Fixtures:_Using_the_Same_Data_Configuration_for_Multiple_Te | test fixture ]] classes to inherit from `testing::Test`. Also for unit tests that use fixture class, `TEST` is replaced with `TEST_F` as required in gtest. There are several custom `main` functions in our existing tests. To make this transition easier, I modify all `main` functions to fallow gtest notation. But eventually we can remove them and use implementation of `main` that gtest provides. ```lang=bash % cat ~/transform #!/bin/sh files=$(git ls-files '*test\.cc') for file in $files do if grep -q "rocksdb::test::RunAllTests()" $file then if grep -Eq '^class \w+Test {' $file then perl -pi -e 's/^(class \w+Test) {/${1}: public testing::Test {/g' $file perl -pi -e 's/^(TEST)/${1}_F/g' $file fi perl -pi -e 's/(int main.*\{)/${1}::testing::InitGoogleTest(&argc, argv);/g' $file perl -pi -e 's/rocksdb::test::RunAllTests/RUN_ALL_TESTS/g' $file fi done % sh ~/transform % make format ``` Second iteration of this diff contains only scripted changes. Third iteration contains manual changes to fix last errors and make it compilable. Test Plan: Build and notice no errors. ```lang=bash % USE_CLANG=1 make check -j55 ``` Tests are still testing. Reviewers: meyering, sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D35157
2015-03-17 22:08:00 +01:00
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}