Move some tests from src to tests

This commit is contained in:
Vinzent Steinberg 2017-05-19 15:54:13 +02:00
parent fbdb247a0e
commit d25f267529
7 changed files with 204 additions and 187 deletions

View File

@ -141,56 +141,6 @@ impl core::iter::FromIterator<f64> for Average {
mod tests { mod tests {
use super::*; use super::*;
use core::iter::Iterator;
#[test]
fn trivial() {
let mut a = Average::new();
assert_eq!(a.len(), 0);
a.add(1.0);
assert_eq!(a.mean(), 1.0);
assert_eq!(a.len(), 1);
assert_eq!(a.sample_variance(), 0.0);
assert_eq!(a.population_variance(), 0.0);
assert_eq!(a.error(), 0.0);
a.add(1.0);
assert_eq!(a.mean(), 1.0);
assert_eq!(a.len(), 2);
assert_eq!(a.sample_variance(), 0.0);
assert_eq!(a.population_variance(), 0.0);
assert_eq!(a.error(), 0.0);
}
#[test]
fn simple() {
let a: Average = (1..6).map(f64::from).collect();
assert_eq!(a.mean(), 3.0);
assert_eq!(a.len(), 5);
assert_eq!(a.sample_variance(), 2.5);
assert_almost_eq!(a.error(), f64::sqrt(0.5), 1e-16);
}
#[test]
fn numerically_unstable() {
// The naive algorithm fails for this example due to cancelation.
let big = 1e9;
let sample = &[big + 4., big + 7., big + 13., big + 16.];
let a: Average = sample.iter().map(|x| *x).collect();
assert_eq!(a.sample_variance(), 30.);
}
#[test]
fn normal_distribution() {
use rand::distributions::{Normal, IndependentSample};
let normal = Normal::new(2.0, 3.0);
let mut a = Average::new();
for _ in 0..1_000_000 {
a.add(normal.ind_sample(&mut ::rand::thread_rng()));
}
assert_almost_eq!(a.mean(), 2.0, 1e-2);
assert_almost_eq!(a.sample_variance().sqrt(), 3.0, 1e-2);
}
#[test] #[test]
fn merge() { fn merge() {
let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.]; let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];

View File

@ -144,55 +144,6 @@ impl core::iter::FromIterator<(f64, f64)> for WeightedAverage {
mod tests { mod tests {
use super::*; use super::*;
use core::iter::Iterator;
#[test]
fn trivial() {
let mut a = WeightedAverage::new();
assert_eq!(a.sum_weights(), 0.);
a.add(1.0, 1.0);
assert_eq!(a.mean(), 1.0);
assert_eq!(a.sum_weights(), 1.0);
assert_eq!(a.population_variance(), 0.0);
assert_eq!(a.error(), 0.0);
a.add(1.0, 1.0);
assert_eq!(a.mean(), 1.0);
assert_eq!(a.sum_weights(), 2.0);
assert_eq!(a.population_variance(), 0.0);
assert_eq!(a.error(), 0.0);
}
#[test]
fn simple() {
let a: WeightedAverage = (1..6).map(|x| (f64::from(x), 1.0)).collect();
assert_eq!(a.mean(), 3.0);
assert_eq!(a.sum_weights(), 5.0);
assert_eq!(a.sample_variance(), 2.5);
assert_almost_eq!(a.error(), f64::sqrt(0.5), 1e-16);
}
#[test]
fn reference() {
// Example from http://www.analyticalgroup.com/download/WEIGHTED_MEAN.pdf.
let values = &[5., 5., 4., 4., 3., 4., 3., 2., 2., 1.];
let weights = &[1.23, 2.12, 1.23, 0.32, 1.53, 0.59, 0.94, 0.94, 0.84, 0.73];
let a: WeightedAverage = values.iter().zip(weights.iter())
.map(|(x, w)| (*x, *w)).collect();
assert_almost_eq!(a.mean(), 3.53486, 1e-5);
assert_almost_eq!(a.sample_variance(), 1.8210, 1e-4);
assert_eq!(a.sum_weights(), 10.47);
assert_almost_eq!(a.error(), f64::sqrt(0.1739), 1e-4);
}
#[test]
fn error_corner_case() {
let values = &[1., 2.];
let weights = &[0.5, 0.5];
let a: WeightedAverage = values.iter().zip(weights.iter())
.map(|(x, w)| (*x, *w)).collect();
assert_eq!(a.error(), 0.5);
}
#[test] #[test]
fn merge_unweighted() { fn merge_unweighted() {
let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.]; let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];

View File

@ -187,67 +187,6 @@ impl core::iter::FromIterator<(f64, f64)> for WeightedAverage {
mod tests { mod tests {
use super::*; use super::*;
use core::iter::Iterator;
#[test]
fn trivial() {
let mut a = WeightedAverage::new();
assert_eq!(a.len(), 0);
assert_eq!(a.sum_weights(), 0.);
assert_eq!(a.sum_weights_sq(), 0.);
a.add(1.0, 1.0);
assert_eq!(a.len(), 1);
assert_eq!(a.weighted_mean(), 1.0);
assert_eq!(a.unweighted_mean(), 1.0);
assert_eq!(a.sum_weights(), 1.0);
assert_eq!(a.sum_weights_sq(), 1.0);
assert_eq!(a.population_variance(), 0.0);
assert_eq!(a.error(), 0.0);
a.add(1.0, 1.0);
assert_eq!(a.len(), 2);
assert_eq!(a.weighted_mean(), 1.0);
assert_eq!(a.unweighted_mean(), 1.0);
assert_eq!(a.sum_weights(), 2.0);
assert_eq!(a.sum_weights_sq(), 2.0);
assert_eq!(a.population_variance(), 0.0);
assert_eq!(a.error(), 0.0);
}
#[test]
fn simple() {
let a: WeightedAverage = (1..6).map(|x| (f64::from(x), 1.0)).collect();
assert_eq!(a.len(), 5);
assert_eq!(a.weighted_mean(), 3.0);
assert_eq!(a.unweighted_mean(), 3.0);
assert_eq!(a.sum_weights(), 5.0);
assert_eq!(a.sample_variance(), 2.5);
assert_almost_eq!(a.error(), f64::sqrt(0.5), 1e-16);
}
#[test]
fn reference() {
// Example from http://www.analyticalgroup.com/download/WEIGHTED_MEAN.pdf.
let values = &[5., 5., 4., 4., 3., 4., 3., 2., 2., 1.];
let weights = &[1.23, 2.12, 1.23, 0.32, 1.53, 0.59, 0.94, 0.94, 0.84, 0.73];
let a: WeightedAverage = values.iter().zip(weights.iter())
.map(|(x, w)| (*x, *w)).collect();
assert_almost_eq!(a.weighted_mean(), 3.53486, 1e-5);
assert_almost_eq!(a.sample_variance(), 1.7889, 1e-4);
assert_eq!(a.sum_weights(), 10.47);
assert_eq!(a.len(), 10);
assert_almost_eq!(a.effective_len(), 8.2315, 1e-4);
assert_almost_eq!(a.error(), f64::sqrt(0.2173), 1e-4);
}
#[test]
fn error_corner_case() {
let values = &[1., 2.];
let weights = &[0.5, 0.5];
let a: WeightedAverage = values.iter().zip(weights.iter())
.map(|(x, w)| (*x, *w)).collect();
assert_eq!(a.error(), 0.5);
}
#[test] #[test]
fn merge_unweighted() { fn merge_unweighted() {
let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.]; let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];

View File

@ -1,35 +1,57 @@
#[macro_use] extern crate average; #[macro_use] extern crate average;
extern crate core;
extern crate rand; extern crate rand;
extern crate stats;
/// Create a random vector by sampling from a normal distribution. use core::iter::Iterator;
fn initialize_vec(size: usize) -> Vec<f64> {
use average::Average;
#[test]
fn trivial() {
let mut a = Average::new();
assert_eq!(a.len(), 0);
a.add(1.0);
assert_eq!(a.mean(), 1.0);
assert_eq!(a.len(), 1);
assert_eq!(a.sample_variance(), 0.0);
assert_eq!(a.population_variance(), 0.0);
assert_eq!(a.error(), 0.0);
a.add(1.0);
assert_eq!(a.mean(), 1.0);
assert_eq!(a.len(), 2);
assert_eq!(a.sample_variance(), 0.0);
assert_eq!(a.population_variance(), 0.0);
assert_eq!(a.error(), 0.0);
}
#[test]
fn simple() {
let a: Average = (1..6).map(f64::from).collect();
assert_eq!(a.mean(), 3.0);
assert_eq!(a.len(), 5);
assert_eq!(a.sample_variance(), 2.5);
assert_almost_eq!(a.error(), f64::sqrt(0.5), 1e-16);
}
#[test]
fn numerically_unstable() {
// The naive algorithm fails for this example due to cancelation.
let big = 1e9;
let sample = &[big + 4., big + 7., big + 13., big + 16.];
let a: Average = sample.iter().map(|x| *x).collect();
assert_eq!(a.sample_variance(), 30.);
}
#[test]
fn normal_distribution() {
use rand::distributions::{Normal, IndependentSample}; use rand::distributions::{Normal, IndependentSample};
use rand::{XorShiftRng, SeedableRng};
let normal = Normal::new(2.0, 3.0); let normal = Normal::new(2.0, 3.0);
let mut values = Vec::with_capacity(size); let mut a = Average::new();
let mut rng = XorShiftRng::from_seed([1, 2, 3, 4]); for _ in 0..1_000_000 {
for _ in 0..size { a.add(normal.ind_sample(&mut ::rand::thread_rng()));
values.push(normal.ind_sample(&mut rng));
} }
values assert_almost_eq!(a.mean(), 2.0, 1e-2);
} assert_almost_eq!(a.sample_variance().sqrt(), 3.0, 1e-2);
#[test]
fn average_vs_streaming_stats_small() {
let values = initialize_vec(100);
let a: average::Average = values.iter().map(|x| *x).collect();
let b: stats::OnlineStats = values.iter().map(|x| *x).collect();
assert_almost_eq!(a.mean(), b.mean(), 1e-16);
assert_almost_eq!(a.population_variance(), b.variance(), 1e-16);
}
#[test]
fn average_vs_streaming_stats_large() {
let values = initialize_vec(1_000_000);
let a: average::Average = values.iter().map(|x| *x).collect();
let b: stats::OnlineStats = values.iter().map(|x| *x).collect();
assert_almost_eq!(a.mean(), b.mean(), 1e-16);
assert_almost_eq!(a.population_variance(), b.variance(), 1e-13);
} }

35
tests/streaming_stats.rs Normal file
View File

@ -0,0 +1,35 @@
#[macro_use] extern crate average;
extern crate rand;
extern crate stats;
/// Create a random vector by sampling from a normal distribution.
fn initialize_vec(size: usize) -> Vec<f64> {
use rand::distributions::{Normal, IndependentSample};
use rand::{XorShiftRng, SeedableRng};
let normal = Normal::new(2.0, 3.0);
let mut values = Vec::with_capacity(size);
let mut rng = XorShiftRng::from_seed([1, 2, 3, 4]);
for _ in 0..size {
values.push(normal.ind_sample(&mut rng));
}
values
}
#[test]
fn average_vs_streaming_stats_small() {
let values = initialize_vec(100);
let a: average::Average = values.iter().map(|x| *x).collect();
let b: stats::OnlineStats = values.iter().map(|x| *x).collect();
assert_almost_eq!(a.mean(), b.mean(), 1e-16);
assert_almost_eq!(a.population_variance(), b.variance(), 1e-16);
}
#[test]
fn average_vs_streaming_stats_large() {
let values = initialize_vec(1_000_000);
let a: average::Average = values.iter().map(|x| *x).collect();
let b: stats::OnlineStats = values.iter().map(|x| *x).collect();
assert_almost_eq!(a.mean(), b.mean(), 1e-16);
assert_almost_eq!(a.population_variance(), b.variance(), 1e-13);
}

54
tests/weighted_average.rs Normal file
View File

@ -0,0 +1,54 @@
#[macro_use] extern crate average;
extern crate core;
use core::iter::Iterator;
use average::WeightedAverage;
#[test]
fn trivial() {
let mut a = WeightedAverage::new();
assert_eq!(a.sum_weights(), 0.);
a.add(1.0, 1.0);
assert_eq!(a.mean(), 1.0);
assert_eq!(a.sum_weights(), 1.0);
assert_eq!(a.population_variance(), 0.0);
assert_eq!(a.error(), 0.0);
a.add(1.0, 1.0);
assert_eq!(a.mean(), 1.0);
assert_eq!(a.sum_weights(), 2.0);
assert_eq!(a.population_variance(), 0.0);
assert_eq!(a.error(), 0.0);
}
#[test]
fn simple() {
let a: WeightedAverage = (1..6).map(|x| (f64::from(x), 1.0)).collect();
assert_eq!(a.mean(), 3.0);
assert_eq!(a.sum_weights(), 5.0);
assert_eq!(a.sample_variance(), 2.5);
assert_almost_eq!(a.error(), f64::sqrt(0.5), 1e-16);
}
#[test]
fn reference() {
// Example from http://www.analyticalgroup.com/download/WEIGHTED_MEAN.pdf.
let values = &[5., 5., 4., 4., 3., 4., 3., 2., 2., 1.];
let weights = &[1.23, 2.12, 1.23, 0.32, 1.53, 0.59, 0.94, 0.94, 0.84, 0.73];
let a: WeightedAverage = values.iter().zip(weights.iter())
.map(|(x, w)| (*x, *w)).collect();
assert_almost_eq!(a.mean(), 3.53486, 1e-5);
assert_almost_eq!(a.sample_variance(), 1.8210, 1e-4);
assert_eq!(a.sum_weights(), 10.47);
assert_almost_eq!(a.error(), f64::sqrt(0.1739), 1e-4);
}
#[test]
fn error_corner_case() {
let values = &[1., 2.];
let weights = &[0.5, 0.5];
let a: WeightedAverage = values.iter().zip(weights.iter())
.map(|(x, w)| (*x, *w)).collect();
assert_eq!(a.error(), 0.5);
}

View File

@ -0,0 +1,66 @@
#[macro_use] extern crate average;
extern crate core;
use core::iter::Iterator;
use average::WeightedAverage2 as WeightedAverage;
#[test]
fn trivial() {
let mut a = WeightedAverage::new();
assert_eq!(a.len(), 0);
assert_eq!(a.sum_weights(), 0.);
assert_eq!(a.sum_weights_sq(), 0.);
a.add(1.0, 1.0);
assert_eq!(a.len(), 1);
assert_eq!(a.weighted_mean(), 1.0);
assert_eq!(a.unweighted_mean(), 1.0);
assert_eq!(a.sum_weights(), 1.0);
assert_eq!(a.sum_weights_sq(), 1.0);
assert_eq!(a.population_variance(), 0.0);
assert_eq!(a.error(), 0.0);
a.add(1.0, 1.0);
assert_eq!(a.len(), 2);
assert_eq!(a.weighted_mean(), 1.0);
assert_eq!(a.unweighted_mean(), 1.0);
assert_eq!(a.sum_weights(), 2.0);
assert_eq!(a.sum_weights_sq(), 2.0);
assert_eq!(a.population_variance(), 0.0);
assert_eq!(a.error(), 0.0);
}
#[test]
fn simple() {
let a: WeightedAverage = (1..6).map(|x| (f64::from(x), 1.0)).collect();
assert_eq!(a.len(), 5);
assert_eq!(a.weighted_mean(), 3.0);
assert_eq!(a.unweighted_mean(), 3.0);
assert_eq!(a.sum_weights(), 5.0);
assert_eq!(a.sample_variance(), 2.5);
assert_almost_eq!(a.error(), f64::sqrt(0.5), 1e-16);
}
#[test]
fn reference() {
// Example from http://www.analyticalgroup.com/download/WEIGHTED_MEAN.pdf.
let values = &[5., 5., 4., 4., 3., 4., 3., 2., 2., 1.];
let weights = &[1.23, 2.12, 1.23, 0.32, 1.53, 0.59, 0.94, 0.94, 0.84, 0.73];
let a: WeightedAverage = values.iter().zip(weights.iter())
.map(|(x, w)| (*x, *w)).collect();
assert_almost_eq!(a.weighted_mean(), 3.53486, 1e-5);
assert_almost_eq!(a.sample_variance(), 1.7889, 1e-4);
assert_eq!(a.sum_weights(), 10.47);
assert_eq!(a.len(), 10);
assert_almost_eq!(a.effective_len(), 8.2315, 1e-4);
assert_almost_eq!(a.error(), f64::sqrt(0.2173), 1e-4);
}
#[test]
fn error_corner_case() {
let values = &[1., 2.];
let weights = &[0.5, 0.5];
let a: WeightedAverage = values.iter().zip(weights.iter())
.map(|(x, w)| (*x, *w)).collect();
assert_eq!(a.error(), 0.5);
}