Move some tests from src to tests
This commit is contained in:
parent
fbdb247a0e
commit
d25f267529
@ -141,56 +141,6 @@ impl core::iter::FromIterator<f64> for Average {
|
|||||||
mod tests {
|
mod tests {
|
||||||
use super::*;
|
use super::*;
|
||||||
|
|
||||||
use core::iter::Iterator;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn trivial() {
|
|
||||||
let mut a = Average::new();
|
|
||||||
assert_eq!(a.len(), 0);
|
|
||||||
a.add(1.0);
|
|
||||||
assert_eq!(a.mean(), 1.0);
|
|
||||||
assert_eq!(a.len(), 1);
|
|
||||||
assert_eq!(a.sample_variance(), 0.0);
|
|
||||||
assert_eq!(a.population_variance(), 0.0);
|
|
||||||
assert_eq!(a.error(), 0.0);
|
|
||||||
a.add(1.0);
|
|
||||||
assert_eq!(a.mean(), 1.0);
|
|
||||||
assert_eq!(a.len(), 2);
|
|
||||||
assert_eq!(a.sample_variance(), 0.0);
|
|
||||||
assert_eq!(a.population_variance(), 0.0);
|
|
||||||
assert_eq!(a.error(), 0.0);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn simple() {
|
|
||||||
let a: Average = (1..6).map(f64::from).collect();
|
|
||||||
assert_eq!(a.mean(), 3.0);
|
|
||||||
assert_eq!(a.len(), 5);
|
|
||||||
assert_eq!(a.sample_variance(), 2.5);
|
|
||||||
assert_almost_eq!(a.error(), f64::sqrt(0.5), 1e-16);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn numerically_unstable() {
|
|
||||||
// The naive algorithm fails for this example due to cancelation.
|
|
||||||
let big = 1e9;
|
|
||||||
let sample = &[big + 4., big + 7., big + 13., big + 16.];
|
|
||||||
let a: Average = sample.iter().map(|x| *x).collect();
|
|
||||||
assert_eq!(a.sample_variance(), 30.);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn normal_distribution() {
|
|
||||||
use rand::distributions::{Normal, IndependentSample};
|
|
||||||
let normal = Normal::new(2.0, 3.0);
|
|
||||||
let mut a = Average::new();
|
|
||||||
for _ in 0..1_000_000 {
|
|
||||||
a.add(normal.ind_sample(&mut ::rand::thread_rng()));
|
|
||||||
}
|
|
||||||
assert_almost_eq!(a.mean(), 2.0, 1e-2);
|
|
||||||
assert_almost_eq!(a.sample_variance().sqrt(), 3.0, 1e-2);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn merge() {
|
fn merge() {
|
||||||
let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
|
let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
|
||||||
|
@ -144,55 +144,6 @@ impl core::iter::FromIterator<(f64, f64)> for WeightedAverage {
|
|||||||
mod tests {
|
mod tests {
|
||||||
use super::*;
|
use super::*;
|
||||||
|
|
||||||
use core::iter::Iterator;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn trivial() {
|
|
||||||
let mut a = WeightedAverage::new();
|
|
||||||
assert_eq!(a.sum_weights(), 0.);
|
|
||||||
a.add(1.0, 1.0);
|
|
||||||
assert_eq!(a.mean(), 1.0);
|
|
||||||
assert_eq!(a.sum_weights(), 1.0);
|
|
||||||
assert_eq!(a.population_variance(), 0.0);
|
|
||||||
assert_eq!(a.error(), 0.0);
|
|
||||||
a.add(1.0, 1.0);
|
|
||||||
assert_eq!(a.mean(), 1.0);
|
|
||||||
assert_eq!(a.sum_weights(), 2.0);
|
|
||||||
assert_eq!(a.population_variance(), 0.0);
|
|
||||||
assert_eq!(a.error(), 0.0);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn simple() {
|
|
||||||
let a: WeightedAverage = (1..6).map(|x| (f64::from(x), 1.0)).collect();
|
|
||||||
assert_eq!(a.mean(), 3.0);
|
|
||||||
assert_eq!(a.sum_weights(), 5.0);
|
|
||||||
assert_eq!(a.sample_variance(), 2.5);
|
|
||||||
assert_almost_eq!(a.error(), f64::sqrt(0.5), 1e-16);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn reference() {
|
|
||||||
// Example from http://www.analyticalgroup.com/download/WEIGHTED_MEAN.pdf.
|
|
||||||
let values = &[5., 5., 4., 4., 3., 4., 3., 2., 2., 1.];
|
|
||||||
let weights = &[1.23, 2.12, 1.23, 0.32, 1.53, 0.59, 0.94, 0.94, 0.84, 0.73];
|
|
||||||
let a: WeightedAverage = values.iter().zip(weights.iter())
|
|
||||||
.map(|(x, w)| (*x, *w)).collect();
|
|
||||||
assert_almost_eq!(a.mean(), 3.53486, 1e-5);
|
|
||||||
assert_almost_eq!(a.sample_variance(), 1.8210, 1e-4);
|
|
||||||
assert_eq!(a.sum_weights(), 10.47);
|
|
||||||
assert_almost_eq!(a.error(), f64::sqrt(0.1739), 1e-4);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn error_corner_case() {
|
|
||||||
let values = &[1., 2.];
|
|
||||||
let weights = &[0.5, 0.5];
|
|
||||||
let a: WeightedAverage = values.iter().zip(weights.iter())
|
|
||||||
.map(|(x, w)| (*x, *w)).collect();
|
|
||||||
assert_eq!(a.error(), 0.5);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn merge_unweighted() {
|
fn merge_unweighted() {
|
||||||
let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
|
let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
|
||||||
|
@ -187,67 +187,6 @@ impl core::iter::FromIterator<(f64, f64)> for WeightedAverage {
|
|||||||
mod tests {
|
mod tests {
|
||||||
use super::*;
|
use super::*;
|
||||||
|
|
||||||
use core::iter::Iterator;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn trivial() {
|
|
||||||
let mut a = WeightedAverage::new();
|
|
||||||
assert_eq!(a.len(), 0);
|
|
||||||
assert_eq!(a.sum_weights(), 0.);
|
|
||||||
assert_eq!(a.sum_weights_sq(), 0.);
|
|
||||||
a.add(1.0, 1.0);
|
|
||||||
assert_eq!(a.len(), 1);
|
|
||||||
assert_eq!(a.weighted_mean(), 1.0);
|
|
||||||
assert_eq!(a.unweighted_mean(), 1.0);
|
|
||||||
assert_eq!(a.sum_weights(), 1.0);
|
|
||||||
assert_eq!(a.sum_weights_sq(), 1.0);
|
|
||||||
assert_eq!(a.population_variance(), 0.0);
|
|
||||||
assert_eq!(a.error(), 0.0);
|
|
||||||
a.add(1.0, 1.0);
|
|
||||||
assert_eq!(a.len(), 2);
|
|
||||||
assert_eq!(a.weighted_mean(), 1.0);
|
|
||||||
assert_eq!(a.unweighted_mean(), 1.0);
|
|
||||||
assert_eq!(a.sum_weights(), 2.0);
|
|
||||||
assert_eq!(a.sum_weights_sq(), 2.0);
|
|
||||||
assert_eq!(a.population_variance(), 0.0);
|
|
||||||
assert_eq!(a.error(), 0.0);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn simple() {
|
|
||||||
let a: WeightedAverage = (1..6).map(|x| (f64::from(x), 1.0)).collect();
|
|
||||||
assert_eq!(a.len(), 5);
|
|
||||||
assert_eq!(a.weighted_mean(), 3.0);
|
|
||||||
assert_eq!(a.unweighted_mean(), 3.0);
|
|
||||||
assert_eq!(a.sum_weights(), 5.0);
|
|
||||||
assert_eq!(a.sample_variance(), 2.5);
|
|
||||||
assert_almost_eq!(a.error(), f64::sqrt(0.5), 1e-16);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn reference() {
|
|
||||||
// Example from http://www.analyticalgroup.com/download/WEIGHTED_MEAN.pdf.
|
|
||||||
let values = &[5., 5., 4., 4., 3., 4., 3., 2., 2., 1.];
|
|
||||||
let weights = &[1.23, 2.12, 1.23, 0.32, 1.53, 0.59, 0.94, 0.94, 0.84, 0.73];
|
|
||||||
let a: WeightedAverage = values.iter().zip(weights.iter())
|
|
||||||
.map(|(x, w)| (*x, *w)).collect();
|
|
||||||
assert_almost_eq!(a.weighted_mean(), 3.53486, 1e-5);
|
|
||||||
assert_almost_eq!(a.sample_variance(), 1.7889, 1e-4);
|
|
||||||
assert_eq!(a.sum_weights(), 10.47);
|
|
||||||
assert_eq!(a.len(), 10);
|
|
||||||
assert_almost_eq!(a.effective_len(), 8.2315, 1e-4);
|
|
||||||
assert_almost_eq!(a.error(), f64::sqrt(0.2173), 1e-4);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn error_corner_case() {
|
|
||||||
let values = &[1., 2.];
|
|
||||||
let weights = &[0.5, 0.5];
|
|
||||||
let a: WeightedAverage = values.iter().zip(weights.iter())
|
|
||||||
.map(|(x, w)| (*x, *w)).collect();
|
|
||||||
assert_eq!(a.error(), 0.5);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn merge_unweighted() {
|
fn merge_unweighted() {
|
||||||
let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
|
let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
|
||||||
|
@ -1,35 +1,57 @@
|
|||||||
#[macro_use] extern crate average;
|
#[macro_use] extern crate average;
|
||||||
|
|
||||||
|
extern crate core;
|
||||||
|
|
||||||
extern crate rand;
|
extern crate rand;
|
||||||
extern crate stats;
|
|
||||||
|
|
||||||
/// Create a random vector by sampling from a normal distribution.
|
use core::iter::Iterator;
|
||||||
fn initialize_vec(size: usize) -> Vec<f64> {
|
|
||||||
|
use average::Average;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn trivial() {
|
||||||
|
let mut a = Average::new();
|
||||||
|
assert_eq!(a.len(), 0);
|
||||||
|
a.add(1.0);
|
||||||
|
assert_eq!(a.mean(), 1.0);
|
||||||
|
assert_eq!(a.len(), 1);
|
||||||
|
assert_eq!(a.sample_variance(), 0.0);
|
||||||
|
assert_eq!(a.population_variance(), 0.0);
|
||||||
|
assert_eq!(a.error(), 0.0);
|
||||||
|
a.add(1.0);
|
||||||
|
assert_eq!(a.mean(), 1.0);
|
||||||
|
assert_eq!(a.len(), 2);
|
||||||
|
assert_eq!(a.sample_variance(), 0.0);
|
||||||
|
assert_eq!(a.population_variance(), 0.0);
|
||||||
|
assert_eq!(a.error(), 0.0);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn simple() {
|
||||||
|
let a: Average = (1..6).map(f64::from).collect();
|
||||||
|
assert_eq!(a.mean(), 3.0);
|
||||||
|
assert_eq!(a.len(), 5);
|
||||||
|
assert_eq!(a.sample_variance(), 2.5);
|
||||||
|
assert_almost_eq!(a.error(), f64::sqrt(0.5), 1e-16);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn numerically_unstable() {
|
||||||
|
// The naive algorithm fails for this example due to cancelation.
|
||||||
|
let big = 1e9;
|
||||||
|
let sample = &[big + 4., big + 7., big + 13., big + 16.];
|
||||||
|
let a: Average = sample.iter().map(|x| *x).collect();
|
||||||
|
assert_eq!(a.sample_variance(), 30.);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn normal_distribution() {
|
||||||
use rand::distributions::{Normal, IndependentSample};
|
use rand::distributions::{Normal, IndependentSample};
|
||||||
use rand::{XorShiftRng, SeedableRng};
|
|
||||||
let normal = Normal::new(2.0, 3.0);
|
let normal = Normal::new(2.0, 3.0);
|
||||||
let mut values = Vec::with_capacity(size);
|
let mut a = Average::new();
|
||||||
let mut rng = XorShiftRng::from_seed([1, 2, 3, 4]);
|
for _ in 0..1_000_000 {
|
||||||
for _ in 0..size {
|
a.add(normal.ind_sample(&mut ::rand::thread_rng()));
|
||||||
values.push(normal.ind_sample(&mut rng));
|
|
||||||
}
|
}
|
||||||
values
|
assert_almost_eq!(a.mean(), 2.0, 1e-2);
|
||||||
}
|
assert_almost_eq!(a.sample_variance().sqrt(), 3.0, 1e-2);
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn average_vs_streaming_stats_small() {
|
|
||||||
let values = initialize_vec(100);
|
|
||||||
let a: average::Average = values.iter().map(|x| *x).collect();
|
|
||||||
let b: stats::OnlineStats = values.iter().map(|x| *x).collect();
|
|
||||||
assert_almost_eq!(a.mean(), b.mean(), 1e-16);
|
|
||||||
assert_almost_eq!(a.population_variance(), b.variance(), 1e-16);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn average_vs_streaming_stats_large() {
|
|
||||||
let values = initialize_vec(1_000_000);
|
|
||||||
let a: average::Average = values.iter().map(|x| *x).collect();
|
|
||||||
let b: stats::OnlineStats = values.iter().map(|x| *x).collect();
|
|
||||||
assert_almost_eq!(a.mean(), b.mean(), 1e-16);
|
|
||||||
assert_almost_eq!(a.population_variance(), b.variance(), 1e-13);
|
|
||||||
}
|
}
|
||||||
|
35
tests/streaming_stats.rs
Normal file
35
tests/streaming_stats.rs
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
#[macro_use] extern crate average;
|
||||||
|
|
||||||
|
extern crate rand;
|
||||||
|
extern crate stats;
|
||||||
|
|
||||||
|
/// Create a random vector by sampling from a normal distribution.
|
||||||
|
fn initialize_vec(size: usize) -> Vec<f64> {
|
||||||
|
use rand::distributions::{Normal, IndependentSample};
|
||||||
|
use rand::{XorShiftRng, SeedableRng};
|
||||||
|
let normal = Normal::new(2.0, 3.0);
|
||||||
|
let mut values = Vec::with_capacity(size);
|
||||||
|
let mut rng = XorShiftRng::from_seed([1, 2, 3, 4]);
|
||||||
|
for _ in 0..size {
|
||||||
|
values.push(normal.ind_sample(&mut rng));
|
||||||
|
}
|
||||||
|
values
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn average_vs_streaming_stats_small() {
|
||||||
|
let values = initialize_vec(100);
|
||||||
|
let a: average::Average = values.iter().map(|x| *x).collect();
|
||||||
|
let b: stats::OnlineStats = values.iter().map(|x| *x).collect();
|
||||||
|
assert_almost_eq!(a.mean(), b.mean(), 1e-16);
|
||||||
|
assert_almost_eq!(a.population_variance(), b.variance(), 1e-16);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn average_vs_streaming_stats_large() {
|
||||||
|
let values = initialize_vec(1_000_000);
|
||||||
|
let a: average::Average = values.iter().map(|x| *x).collect();
|
||||||
|
let b: stats::OnlineStats = values.iter().map(|x| *x).collect();
|
||||||
|
assert_almost_eq!(a.mean(), b.mean(), 1e-16);
|
||||||
|
assert_almost_eq!(a.population_variance(), b.variance(), 1e-13);
|
||||||
|
}
|
54
tests/weighted_average.rs
Normal file
54
tests/weighted_average.rs
Normal file
@ -0,0 +1,54 @@
|
|||||||
|
#[macro_use] extern crate average;
|
||||||
|
|
||||||
|
extern crate core;
|
||||||
|
|
||||||
|
use core::iter::Iterator;
|
||||||
|
|
||||||
|
use average::WeightedAverage;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn trivial() {
|
||||||
|
let mut a = WeightedAverage::new();
|
||||||
|
assert_eq!(a.sum_weights(), 0.);
|
||||||
|
a.add(1.0, 1.0);
|
||||||
|
assert_eq!(a.mean(), 1.0);
|
||||||
|
assert_eq!(a.sum_weights(), 1.0);
|
||||||
|
assert_eq!(a.population_variance(), 0.0);
|
||||||
|
assert_eq!(a.error(), 0.0);
|
||||||
|
a.add(1.0, 1.0);
|
||||||
|
assert_eq!(a.mean(), 1.0);
|
||||||
|
assert_eq!(a.sum_weights(), 2.0);
|
||||||
|
assert_eq!(a.population_variance(), 0.0);
|
||||||
|
assert_eq!(a.error(), 0.0);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn simple() {
|
||||||
|
let a: WeightedAverage = (1..6).map(|x| (f64::from(x), 1.0)).collect();
|
||||||
|
assert_eq!(a.mean(), 3.0);
|
||||||
|
assert_eq!(a.sum_weights(), 5.0);
|
||||||
|
assert_eq!(a.sample_variance(), 2.5);
|
||||||
|
assert_almost_eq!(a.error(), f64::sqrt(0.5), 1e-16);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn reference() {
|
||||||
|
// Example from http://www.analyticalgroup.com/download/WEIGHTED_MEAN.pdf.
|
||||||
|
let values = &[5., 5., 4., 4., 3., 4., 3., 2., 2., 1.];
|
||||||
|
let weights = &[1.23, 2.12, 1.23, 0.32, 1.53, 0.59, 0.94, 0.94, 0.84, 0.73];
|
||||||
|
let a: WeightedAverage = values.iter().zip(weights.iter())
|
||||||
|
.map(|(x, w)| (*x, *w)).collect();
|
||||||
|
assert_almost_eq!(a.mean(), 3.53486, 1e-5);
|
||||||
|
assert_almost_eq!(a.sample_variance(), 1.8210, 1e-4);
|
||||||
|
assert_eq!(a.sum_weights(), 10.47);
|
||||||
|
assert_almost_eq!(a.error(), f64::sqrt(0.1739), 1e-4);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn error_corner_case() {
|
||||||
|
let values = &[1., 2.];
|
||||||
|
let weights = &[0.5, 0.5];
|
||||||
|
let a: WeightedAverage = values.iter().zip(weights.iter())
|
||||||
|
.map(|(x, w)| (*x, *w)).collect();
|
||||||
|
assert_eq!(a.error(), 0.5);
|
||||||
|
}
|
66
tests/weighted_average2.rs
Normal file
66
tests/weighted_average2.rs
Normal file
@ -0,0 +1,66 @@
|
|||||||
|
#[macro_use] extern crate average;
|
||||||
|
|
||||||
|
extern crate core;
|
||||||
|
|
||||||
|
use core::iter::Iterator;
|
||||||
|
|
||||||
|
use average::WeightedAverage2 as WeightedAverage;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn trivial() {
|
||||||
|
let mut a = WeightedAverage::new();
|
||||||
|
assert_eq!(a.len(), 0);
|
||||||
|
assert_eq!(a.sum_weights(), 0.);
|
||||||
|
assert_eq!(a.sum_weights_sq(), 0.);
|
||||||
|
a.add(1.0, 1.0);
|
||||||
|
assert_eq!(a.len(), 1);
|
||||||
|
assert_eq!(a.weighted_mean(), 1.0);
|
||||||
|
assert_eq!(a.unweighted_mean(), 1.0);
|
||||||
|
assert_eq!(a.sum_weights(), 1.0);
|
||||||
|
assert_eq!(a.sum_weights_sq(), 1.0);
|
||||||
|
assert_eq!(a.population_variance(), 0.0);
|
||||||
|
assert_eq!(a.error(), 0.0);
|
||||||
|
a.add(1.0, 1.0);
|
||||||
|
assert_eq!(a.len(), 2);
|
||||||
|
assert_eq!(a.weighted_mean(), 1.0);
|
||||||
|
assert_eq!(a.unweighted_mean(), 1.0);
|
||||||
|
assert_eq!(a.sum_weights(), 2.0);
|
||||||
|
assert_eq!(a.sum_weights_sq(), 2.0);
|
||||||
|
assert_eq!(a.population_variance(), 0.0);
|
||||||
|
assert_eq!(a.error(), 0.0);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn simple() {
|
||||||
|
let a: WeightedAverage = (1..6).map(|x| (f64::from(x), 1.0)).collect();
|
||||||
|
assert_eq!(a.len(), 5);
|
||||||
|
assert_eq!(a.weighted_mean(), 3.0);
|
||||||
|
assert_eq!(a.unweighted_mean(), 3.0);
|
||||||
|
assert_eq!(a.sum_weights(), 5.0);
|
||||||
|
assert_eq!(a.sample_variance(), 2.5);
|
||||||
|
assert_almost_eq!(a.error(), f64::sqrt(0.5), 1e-16);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn reference() {
|
||||||
|
// Example from http://www.analyticalgroup.com/download/WEIGHTED_MEAN.pdf.
|
||||||
|
let values = &[5., 5., 4., 4., 3., 4., 3., 2., 2., 1.];
|
||||||
|
let weights = &[1.23, 2.12, 1.23, 0.32, 1.53, 0.59, 0.94, 0.94, 0.84, 0.73];
|
||||||
|
let a: WeightedAverage = values.iter().zip(weights.iter())
|
||||||
|
.map(|(x, w)| (*x, *w)).collect();
|
||||||
|
assert_almost_eq!(a.weighted_mean(), 3.53486, 1e-5);
|
||||||
|
assert_almost_eq!(a.sample_variance(), 1.7889, 1e-4);
|
||||||
|
assert_eq!(a.sum_weights(), 10.47);
|
||||||
|
assert_eq!(a.len(), 10);
|
||||||
|
assert_almost_eq!(a.effective_len(), 8.2315, 1e-4);
|
||||||
|
assert_almost_eq!(a.error(), f64::sqrt(0.2173), 1e-4);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn error_corner_case() {
|
||||||
|
let values = &[1., 2.];
|
||||||
|
let weights = &[0.5, 0.5];
|
||||||
|
let a: WeightedAverage = values.iter().zip(weights.iter())
|
||||||
|
.map(|(x, w)| (*x, *w)).collect();
|
||||||
|
assert_eq!(a.error(), 0.5);
|
||||||
|
}
|
Loading…
x
Reference in New Issue
Block a user