Master-DataScience-Notes/1year/3trimester/Machine Learning, Statistical Learning, Deep Learning and Artificial Intelligence/Machine Learning/Notes/lectures/lecture7.tex
Andreaierardi 4b2dc8b037 dataset
2020-05-25 16:25:06 +02:00

300 lines
12 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[../main.tex]{subfiles}
\begin{document}
\chapter{Lecture 7 - 30-03-2020}
Bounding statistical risk of a predictor\\\
Design a learning algorithm that predict with small statistical risk\\
$$
(D,\ell) \qquad \ell_d(h) = \barra{E}\left[ \, \ell (y), h(x) \, \right]
$$
were $D$ is unknown
$$
\ell(y, \hat{y}) \in [0,1] \quad \forall y, \hat{y} \in Y
$$
We cannot compute statistical risk of all predictor.\\
We assume statistical loss is bounded so between 0 and 1. Not true for all
losses (like logarithmic ).\\
Before design a learning algorithm with lowest risk, How can we estimate
risk?\\
We can use test error $\rightarrow$ way to measure performances of a predictor h.
We want to link test error and risk.
\\
Test set $S' = \{ (x'_1, y'_1) ...(x'_n,y'_n) \}$ is a random sample from $D$
\\
How can we use this assumption?\\
Go back to the definition of test error\\
\\
\red{ Sample mean (IT: Media campionaria)}\\
$$
\hat{\ell}_s(h) = \frac{1}{n} \cdot \sum_{t=1}^{n} \ell (\hat{y}_t,h(x'_t))
$$
i can look at this as a random variable
\col{$\ell(y'_t,h(x'_t))$}{Blue}
\\
$$
\barra{E} \left[ \, \ell (y'_t, h(x'_t)) \right] = \ell_D(h) \longrightarrow \red{risk}
$$\\
Using law of large number (LLN), i know that:
$$
\hat{\ell} \longrightarrow \ell_D(h) \qquad as \quad n \rightarrow \infty
$$
We cannot have a sample of $n = \infty$ so we will introduce another assumption:
the \red{Chernoff-Hoffding bound}
\section{Chernoff-Hoffding bound}
$$
Z_1,...,Z_n \quad \textit{iid random variable} \qquad \barra{E}\left[Z_t \right] = u
$$
all drawn for the same distribution
\\
$$
t = 1, ..., n \qquad and \qquad 0 \leq Z_t \leq 1 \qquad t = 1,...,n \quad then \quad \forall \varepsilon > 0
$$\
$$
\barra{P} \left( \frac{1}{n} \cdot \sum_{t=1}^{n} z_t > u + \varepsilon \right) \leq e^{-2 \, \varepsilon^2 \, n} \qquad or \qquad \barra{P} \left( \frac{1}{n} \cdot \sum_{t=1}^{n} z_t < u + \varepsilon \right) \leq e^{-2 \, \varepsilon^2 \, n}
$$
as sample size then $\downarrow$
$$
Z_t = \ell(Y'_t, h(X'_t)) \in \left[0,1\right]
$$
$
(X'_1, Y'_1)...(X'_n, Y'_N)$ are $iid$ therefore, \\ $\ell\left(Y'_t, h\left(X'_t\right)\right)$ \quad $t = 1,...,n $ \quad are also $iid$
\\
We are using the bound of e to bound the deviation of this.
\section{Union Bound}
Union bound: a collection of event not necessary disjoint, then i know
that probability of the union of this event is the at most the sum of the
probabilities of individual events
$$
A_1, ..., A_n \qquad \barra{P}\left( A_1 \cup ... \cup A_n \right) \leq \sum_{t=1}^{n} \barra{P} \left(A_t\right)
$$
\begin{figure}[h]
\centering
\includegraphics[width=0.3\linewidth]{../img/lez7-img1.JPG}
\caption{Example}
%\label{fig:}
\end{figure}\\
\red{that's why $ \leq$}
\\\\
$$
\barra{P} \left(|\,\hat{\ell}_{s'} \left( h \right) - \ell_D\left( h \right) \, | \, > \varepsilon \right)
$$
This is the probability according to the random draw of the test set.\\
\\
If test error differ from the risk by a number epsilon > 0. I want to bound the
probability. This two thing will differ by more than epsilon. How can i use the
Chernoff bound?
$$
|\,\hat{\ell}_{s'} \left( h \right) - \ell_D\left( h \right) \, | \, > \varepsilon \quad \Rightarrow \quad
\hat{\ell}_{s'}\left(h\right)-\ell_D\left(h\right) > \varepsilon \quad \vee \quad
\hat{\ell}_D \left(h\right)-\ell_{s'}\left(h\right) > \varepsilon
$$
$$
A, B \qquad A \Rightarrow B \qquad \barra{P} \left( A \right) < \barra{P} \left( B \right)
$$
\begin{figure}[h]
\centering
\includegraphics[width=0.2\linewidth]{../img/lez7-img2.JPG}
\caption{Example}
%\label{fig:}
\end{figure}
$$
\barra{P} \left(|\,\hat{\ell}_{s'} \left( h \right) - \ell_D\left( h \right) \, | \, > \varepsilon \right)
\leq
\barra{P} \left( \,| \hat{\ell}_{s'}\left(h\right)-\ell_D\left(h\right) |\,\right) \quad
\cup \quad
\barra{P} \left( \,|
\hat{\ell}_D \left(h\right)-\ell_{s'}\left(h\right)
|\,\right)
\leq
$$\
$$
\leq
\barra{P} \left( \hat{\ell}_{s'} > \ell_D\left(h\right) + \varepsilon \right) + \barra{P} \left( \hat{\ell}_{s'} < \ell_D\left(h\right) - \varepsilon \right)
\quad
\leq \quad
2 \cdot e^{-2 \, \varepsilon^2 \, n} \quad \Rightarrow \red{ \textit{we call it } \delta }
$$
$$
\varepsilon = \sqrt[]{\frac{1}{2\cdot n}\ln \frac{2}{\delta
}}
$$
\col{The two events are disjoint}{Blue}\\\\
This mean that probability of this deviation is at least delta!
$$
|\, \hat{\ell}_{s'}\left(h\right)-\ell_D\left(h\right) \, | \leq \sqrt[]{\frac{1}{2\cdot n} \ln \frac{2}{\delta}} \qquad \textit{with probability at least $1- \delta$}
$$
\red{Test error of true estimate is going to be good for this value ($\delta$)}
\\
\begin{figure}[h]
\centering
\includegraphics[width=0.5\linewidth]{../img/lez7-img3.JPG}
\caption{Example}
%\label{fig:}
\end{figure}Confidence interval for risk at confidence level 1-delta.\\
I want to take $\delta = 0,05$ so that $1 - \delta$ is $95\%$. So test error is going to be
an estimate of the true risk which is precise that depend on how big is the test
set ($n$).\\
As n grows I can pin down the position of the true risk.\\\
This is how we can use probability to make sense of what we do in practise.
If we take a predictor h we can compute the risk error estimate.\\
We can measure how accurate is our risk error estimate.\\
\textbf{Test error is an estimate of risk for a given predictor (h).}
\\
$$
\barra{E} \left[ \, \ell\left( Y'_t, h\left(X'_t\right)\right) \, \right] = \ell_D \left( h\right)
$$
\textbf{h is fixed with respect to S’} $\longrightarrow$ $h$ does not depend on the test set.
So learning algorithm which produce h not have access to test set.\\
If we use test set we break down this equation.
\\\\
Now, how to \textbf{build a good algorithm?}\\
Training set $S = \{ \left(x_1,y_1\right)...\left(x_m,y_m\right) \}$ random sample
\\$ A $ \qquad $A\left(S\right) = h $ predictor output by $A$ given $S$
where A is \red{learning algorithm as function of traning set $S$.}
\\
$\forall \, S$ \qquad $A\left(S\right) \in H \qquad h^* \in H $
\\
$$
\ell_D\left(h^*\right) = min \, \ell_D \left(h\right) \qquad \hat{\ell}_s\left(h^*\right) \textit{is closed to } \ell_D\left(h^*\right) \longrightarrow \textbf{it is going to have small error }
$$
where $\ell_D\left(h^*\right)$ is the \red{training error of $h^*$}
\begin{figure}[h]
\centering
\includegraphics[width=0.3\linewidth]{../img/lez7-img4.JPG}
\caption{Example}
%\label{fig:}
\end{figure}\\
This guy $\ell_D\left(h^*\right)$ is closest to $0$ since optimum\\
\begin{figure}[h]
\centering
\includegraphics[width=0.3\linewidth]{../img/lez7-img5.JPG}
\caption{Example}
%\label{fig:}
\end{figure}\\
In risk we get opt in $h^*$ but in empirical one we could get another $h’$ better than $h^+$
\\\\
In order to fix on a concrete algorithm we are going to take the empirical Islam
minimiser (ERM) algorithm.
\\
$A$ is $ERM$ on $H$ \qquad $\left(A\right) = \hat{h} = (\in) \, argmin \, \hat{\ell}_S\left(h\right)
$
\\
Once I piack $\hat{h}$ i can look at training error of ERM
\\
$$ \hat{\ell}_S\left(\hat{h}\right) of \hat{h} = A(S)$$
where $\hat{\ell}_S$ is the training error
\\\\
Should $\hat{\ell}_S\left(\hat{h}\right)$ be close to $\ell_D\left(\hat{h}\right)$ ?
\\
I’m interested in empirical error minimiser and do a trivial decomposition.
\\\\
$$
\ell_d\left(\hat{h}\right) = \quad \ell_D\left(\hat{h}\right) - \ell_d\left(h^*\right) + \qquad \longrightarrow \red{\textbf{ Variance error $\Rightarrow$ Overfitting}}
$$
$$
\qquad \quad +\, \ell_d\left(h^+\right) - \ell_d\left(f^*\right) + \qquad \longrightarrow \red{\textbf{ Bias error $\Rightarrow$ Underfitting}}
$$
$$ \qquad \qquad \quad
+ \, \ell_D\left(f^*\right)\qquad \qquad \quad \longrightarrow \red{\textbf{ Bayes risk $\Rightarrow$ Unavoidable}}
$$\\
Even the best predictor is going to suffer that\\
$$ f^* \textit{ is \textbf{Bayes Optimal} for $(D,\ell)$ }
$$
$$\forall \, h \qquad \ell_D\left(h\right) \geq \ell_D\left(f^*\right)
$$
If $f^* \not\in H$ then $\ell_D\left(h^*\right) > \ell_D (f^*) $
\\\\
If i pick $h^*$ I will pick some error because we are not close enough to the risk.\\
We called this component \red{\textbf{bias error}}.\\
Bias error is responsible for underfitting (when training and test are close
to each but they are both high :( )\\
\red{\textbf{Variance error}} over fitting
\\
\begin{figure}[h]
\centering
\includegraphics[width=0.5\linewidth]{../img/lez7-img6.JPG}
\caption{Draw of how $\hat{h}$, $h^*$ and $f^*$ are represented}
%\label{fig:}
\end{figure}\\
Variance is a random quantity and we want to study this.
We can always get risk from training error.
\\\\
\section{Studying overfitting of a ERM}
We can bound it with probability.\\
\bred{I add and subtract trivial traning error $\hat{\ell}_S\left(h\right)$}
$$
\ell_D \left(\hat{h}\right)
-\ell_d \left(h^*\right)
\quad
=
\quad
\ell_D \left(\hat{h}\right) -
\hat{\ell}_S\left( h \right)
+
\hat{\ell}_S \left( \hat{h} \right)
- \ell_D\left( h^* \right) \leq
$$
$$
\leq \, \ell_D \left(\hat{h}\right) -
\hat{\ell}_S\left( \hat{h} \right)
+
\hat{\ell}_S \left( h^* \right)
- \ell_D\left( h^* \right) \leq \,
$$
$$
\leq \, | \, \ell_D\left(\hat{h}\right) - \hat{\ell}_S\left(h\right) \, | + | \, \hat{\ell}_S\left(h^+\right) - \ell_D\left(h^*\right) \, |\, \leq
$$
$$
\leq \quad 2 \cdot max \, |\hat{\ell}_S\left(h\right) - \ell_D\left(h\right) |
$$
(no probability here)\\
\textbf{Any given $\hat{h}$ minising $\hat{\ell}_S\left(h\right)$}
\\\\
Now assume we have a large deviation
\\
$$
\textit{Assume \quad } \ell_D\left(\hat{h}\right) - \ell_D \left(h^* \right) > \varepsilon \qquad \Rightarrow \qquad max \, | \, \hat{\ell}_S\left(h\right) - \ell_D \left(h\right) \, | > \frac{\varepsilon}{2}
$$
\\
We know $\ell_d\left(\hat{h}\right) - \ell_D\left(h^*\right)
\quad \leq \quad 2
\cdot max \,|\, \hat{\ell}_S \left(h\right) - \ell_D\left(h\right) \, |$ \quad $\Rightarrow$
\\
$$
\Rightarrow \quad \exists h \in H \qquad | \, \hat{\ell}_S\left(h\right) - \ell_D\left(h \right) \, | \, > \frac{3}{2} \qquad \Rightarrow
$$
with $|H| < \infty$
$$
\Rightarrow U \left( \, | \, \hat{\ell}_S\left(h\right) - \ell_D \left(h\right) \, | \, \right) > \frac{3}{2}
$$
\\
$$
\barra{P} \left( \ell_D \left(\hat{h}\right) - \ell_D \left( h^* \right)
>
\varepsilon \right) \quad \leq \quad \barra{P} \left( U \left( \, | \, \hat{\ell}_S\left(h\right) - \ell_D \left(h\right) \, | \, \right) > \frac{3}{2} \right) \quad \leq
$$
$$
\red{\leq} \quad \sum_{h \in H}{} \, \barra{P} \left( \, | \, \hat{\ell}_S\left(h\right) - \ell_D \left(h\right) \, | \, > \frac{3}{2} \right) \qquad \leq \qquad \sum_{h \in H}{} 2 \cdot e^{-2 \, \left(\frac{\varepsilon}{2}\right)^2 \, m} \qquad \leq
$$
\bred{Union Bound } \blue{Chernoff. Hoffding bound ($\barra{P} \left( ... \right) $)}
$$
\leq \quad 2 \cdot |H| e^{- \, \frac{\varepsilon^2}{2} \, m}
$$
\\
Solve for $\varepsilon$ \qquad
$
2 \cdot |H| e^{- \, \frac{\varepsilon^2}{2} \, m} \quad = \quad \delta
$
$$
\textit{ Solve for } \varepsilon \longrightarrow \quad \varepsilon = \sqrt[]{\frac{2}{m} \cdot \ln \cdot \frac{2|H|}{\delta}}
$$
$$
\ell_D\left(\hat{h}\right) - \ell_D \left( h^* \right) \quad\leq \quad \sqrt[]{\frac{2}{m} \cdot \ln \cdot \frac{2|H|}{\delta}}
$$
\\
With probability at least $1 - \delta$ with respect to random draw of $S$.\\
We want $m >> ln |H|$ \quad $\longrightarrow$ in order to avoid overfitting
\\
\end{document}