Motivation:
DelegatingSslContext at the moment intercept newEngine calls and allow to init the SslEngine after it is created. The problem here is that this may not work the SSLEngine that is wrapped in the SslHandler when calling newHandler(...). This is because some SslContext implementations not delegate to newEngine(...) when creating the SslHandler to allow some optimizations. For this we should also allow to init the SslHandler after its creation and by default just delegate to initEngine(...).
Modifications:
Allow the user to also init the SslHandler after creation while by default init its SSLEngine after creation.
Result:
More flexible and correct code.
Motivation:
Remove Unsafe dependency for Atomic queues in JCTools, resolved in version 2.1.0
Modification:
Change pom JCTools version
Result:
Fixes#7117
Motivation:
As noticed in https://stackoverflow.com/questions/45700277/
compilation can fail if the definition of a method doesn't
match the declaration. It's easy enough to add this in, and make
it easy to compile.
Modifications:
Add JNIEXPORT to the entry points.
* On Windows this adds: `__declspec(dllexport)`
* On Mac this adds: `__attribute__((visibility("default")))`
* On Linux (GCC 4.2+) this adds: ` __attribute__((visibility("default")))`
* On other it doesn't add anything.
Result:
Easier compilation
Motivation:
KQueueEventLoop and EpollEventLoop implement different approaches to applying a timeout of their respective poll calls. Epoll attempts to ensure the desired timeout is satisfied at the java layer and at the JNI layer, but it should be sufficient to account for spurious wakups at the JNI layer. Epoll timeout granularity is also limited to milliseconds which may be too large for some latency sensitive applications.
Modifications:
- Make EpollEventLoop wait method look like KQueueEventLoop
- Epoll should support a finer timeout granularity via timerfd_create. We can hide most of these details behind the epollWait0 JNI call to avoid crossing additional JNI boundaries.
Result:
More consistent timeout approach between KQueue and Epoll.
Motivation:
The EPOLL transport uses EPOLLRDHUP to detect when the peer closes the write side of the socket. Currently KQueue is not able to mimic this behavior and the only way to detect if the peer has closed is to read. It may not always be appropriate to read for backpressure and other reasons at the application level.
Modifications:
- Support EVFILT_SOCK filter which provides notification when the peer closes the socket
Result:
KQueue transport has more consistent behavior with Epoll transport for detecting peer closure.
Motivation:
The construction `new AsciiString(string.substring(...))` can be replaced with the `new AsciiString(string, start, length)` to avoid extra allocation.
Modifications:
Apply the described replacement in `HttpConversionUtil#setHttp2Authority`.
Result:
Less allocations.
Motivation:
- A `hashCode` of the SmtpCommand is recalculated on each call of `hashCode()`. Cached hash code value can be just replaced with call of `name.hashCode()`.
- The commands cache don't work for strings: `SmtpCommand.valueOf("HELO")` returns a new instance.
- Field `contentExpected` is redundant and can be replaced with `equals(DATA)`.
Modifications:
- Use the `name.hashCode()` as hash code result.
- Fix a command cache: use strings as map keys.
- Replace field `contentExpected` to using `this.equals(DATA)`.
- Add unit tests.
Result:
More correct and clean code.
Motivation:
Calling `newInstance()` on a Class object can bypass compile time
checked Exception propagation. This is noted in Java Puzzlers,
as well as in ErrorProne:
http://errorprone.info/bugpattern/ClassNewInstance
Modifications:
Use the niladic constructor to create a new instance.
Result:
Compile time safety for checked exceptions
Motivation:
Due to an oversight (by myself), linking two JNI modules with
duplicate symbols fails in linking. This only seems to happen
some of the time (the behavior seems to be different between GCC
and Clang toolchains). For instance, including both netty tcnative
and netty epoll fails to link because of duplicate JNI_OnLoad
symobols.
Modification:
Do not define the JNI_OnLoad and JNI_OnUnload symbols when
compiling for static linkage, as indicated by the NETTY_BUILD_STATIC
preprocessor define. They are never directly called when
statically linked.
Result:
Able to statically compile epoll and tcnative code into a single
binary.
This reverts commit d63bb4811ed8ccd5d9e45853f3ac6aee9da7ecab as this not covered correctly all cases and so could lead to missing fireChannelReadComplete() calls. We will re-evalute d63bb4811ed8ccd5d9e45853f3ac6aee9da7ecab and resbumit a pr once we are sure all is handled correctly
Motivation:
We recently changed netty-tcnative to use underscores in its native library names.
Modifications:
Update code to use underscores when loading native library.
Result:
More consistent code.
Motivation:
On restricted systems (e.g. grsecurity), it might not be possible to write a .so on disk and load it afterwards. On those system Netty should check java.library.path for libraries to load.
Modifications:
Changed NativeLibraryLoader.java to first try to load libs from java.library.path before exporting the .so to disk.
Result:
Libraries load fine on restricted systems.
Motivation:
SslHandlerTest#testCompositeBufSizeEstimationGuaranteesSynchronousWrite has been observed to fail on CI servers, but it is not clear why.
Modifications:
- Add more visibility into what the state was and what the condition that caused the failure was.
Result:
More visibility when the test fails.
Motivation:
Commit 4448b8f42f599e79db1744cd8f5fdfee702c195e introduced some API breakage which we need to revert before we release.
Modifications:
- Introduce an AllocatorAwareSslEngineWrapperFactory which expose an extra method that takes a ByteBufAllocator as well.
- Revert API changes to SslEngineWrapperFactory.
Result:
API breakage reverted.
Motivation:
When compiling this code and running it through errorprone[1], this message appears:
```
StringUtil.java:493: error: [FallThrough] Switch case may fall through; add a `// fall through` comment if it was deliberate
case LINE_FEED:
^
(see http://errorprone.info/bugpattern/FallThrough)
```
By adding that comment, it silences the error and also makes clear the intention of that statement.
[1]http://errorprone.info/index
Modification:
Add simple comment.
Result:
Errorprone is happier with the code.
Motivation:
In ReadOnlyByteBufferBuf.copy(...) we just allocated a ByteBuffer directly and wrapped it. This way it was not possible for us to free the direct memory that was used by the copy without the GC.
Modifications:
- Ensure we use the allocator when create the copy and so be able to release direct memory in a timely manner
- Add unit test
- Depending on if the to be copied buffer is direct or heap based we also allocate the same type on copy.
Result:
Fixes [#7103].
Motivation:
To be able to build with latest java9 release we need to adjust commons-lang version and maven-enforcer-plugin.
Modifications:
- Use commons-lang 2.6.0
- Use maven-enforcer-plugin 3.0.0.M1 when building with java9
Result:
Netty builds again with latest java9 release
Motivation:
`ByteBuf` does not have the little endian variant of float/double access methods.
Modifications:
Add support for little endian floats and doubles into `ByteBuf`.
Result:
`ByteBuf` has get/read/set/writeFloatLE() and get/read/set/writeDoubleLE() methods. Fixes [#6576].
Motivation:
The `AsciiString#toString` method calculate string value and cache it into field. If an `AsciiString` created from the `String` value, we can avoid rebuilding strings if we cache them immediately when creating `AsciiString`. It would be useful for constants strings, which already stored in the JVMs string table, or in cases where an unavoidable `#toString `method call is assumed.
Modifications:
- Add new static method `AsciiString#cache(String)` which save string value into cache field.
- Apply a "benign" data race in the `#hashCode` and `#toString` methods.
Result:
Less memory usage in some `AsciiString` use cases.
Motivation:
At the moment we try to load the library using multiple names which includes names using - but also _ . We should just use _ all the time.
Modifications:
Replace - with _
Result:
Fixes [#7069]
Motivation:
In some cases of using an `InternalThreadLocalMap#stringBuilder`, the `StringBuilder`s size can often exceed the exist limit (1024 bytes). This can lead to permanent memory reallocation.
Modifications:
Add custom properties for the initial capacity and maximum size (after which the `StringBuilder`s capacity will be reduced to the initial capacity).
Result:
An `InternalThreadLocalMap#stringBuilder`s initial and max size is configurable. Fixes [#7092].
Motivation:
SocketStringEchoTest has been observed to fail on CI servers, but the stack traces still indicate work was being done.
Modifications:
- Increase the test timeout
Result:
Tests have more time to complete, and hopefully less false positive test failures.
Motivation:
HttpObjectAggregator differs from HttpServerExpectContinueHandler's handling
of expect headers by not stripping the 'expect' header when a response
is generated.
Modifications:
HttpObjectAggregator now removes the 'expect' header in cases where it generates
a response.
Result:
Consistent and correct behavior between HttpObjectAggregator and HttpServerExpectContinueHandler.
Motivation:
Missing return in ByteBufUtil#writeAscii causes endless loop
Modifications:
Add return after write finished
Result:
ByteBufUtil#writeAscii is ok
Motivation:
We should call promise.setUncancellable() in DefaultHttp2StreamChannel.Unsafe impl to detect if the operation was cancelled.
Modifications:
Add promise.setUncancellable() calls
Result:
More correct handling of cancelled promises
Motivation:
Our http2 child channel implementation was not 100 % complete and had a few bugs. Beside this the performance overhead was non-trivial.
Modifications:
There are a lot of modifications, the most important....
* Http2FrameCodec extends Http2ConnectionHandler and Http2MultiplexCodec extends Http2FrameCodec to reduce performance heads and inter-dependencies on handlers in the pipeline
* Correctly handle outbound flow control for child channels
* Support unknow frame types in Http2FrameCodec and Http2MultiplexCodec
* Use a consistent way how to create Http2ConnectionHandler, Http2FrameCodec and Http2MultiplexCodec (via a builder)
* Remove Http2Codec and Http2CodecBuilder as the user should just use Http2MultipleCodec and Http2MultiplexCodecBuilder now
* Smart handling of flushes from child channels to reduce overhead
* Reduce object allocations
* child channels always use the same EventLoop as the parent Channel to reduce overhead and simplify implementation.
* Not extend AbstractChannel for the child channel implementation to reduce overhead in terms of performance and memory usage
* Remove Http2FrameStream.managedState(...) as the user of the child channel api should just use Channel.attr(...)
Result:
Http2MultiplexCodec (and so child channels) and Http2FrameCodec are more correct, faster and more feature complete.
Motivation:
This PR (unfortunately) does 4 things:
1) Add outbound flow control to the Http2MultiplexCodec:
The HTTP/2 child channel API should interact with HTTP/2 outbound/remote flow control. That is,
if a H2 stream used up all its flow control window, the corresponding child channel should be
marked unwritable and a writability-changed event should be fired. Similarly, a unwritable
child channel should be marked writable and a writability-event should be fired, once a
WINDOW_UPDATE frame has been received. The changes are (mostly) contained in ChannelOutboundBuffer,
AbstractHttp2StreamChannel and Http2MultiplexCodec.
2) Introduce a Http2Stream2 object, that is used instead of stream identifiers on stream frames. A
Http2Stream2 object allows an application to attach state to it, and so a application handler
no longer needs to maintain stream state (i.e. in a map(id -> state)) himself.
3) Remove stream state events, which are no longer necessary due to the introduction of Http2Stream2.
Also those stream state events have been found hard and complex to work with, when porting gRPC
to the Http2FrameCodec.
4) Add support for HTTP/2 frames that have not yet been implemented, like PING and SETTINGS. Also add
a Http2FrameCodecBuilder that exposes options from the Http2ConnectionHandler API that couldn't else
be used with the frame codec, like buffering outbound streams, window update ratio, frame logger, etc.
Modifications:
1) A child channel's writability and a H2 stream's outbound flow control window interact, as described
in the motivation. A channel handler is free to ignore the channel's writability, in which case the
parent channel is reponsible for buffering writes until a WINDOW_UPDATE is received.
The connection-level flow control window is ignored for now. That is, a child channel's writability
is only affected by the stream-level flow control window. So a child channel could be marked writable,
even though the connection-level flow control window is zero.
2) Modify Http2StreamFrame and the Http2FrameCodec to take a Http2Stream2 object intstead of a primitive
integer. Introduce a special Http2ChannelDuplexHandler that has newStream() and forEachActiveStream()
methods. It's recommended for a user to extend from this handler, to use those advanced features.
3) As explained in the documentation, a new inbound stream active can be detected by checking if the
Http2Stream2.managedState() of a Http2HeadersFrame is null. An outbound stream active can be detected
by adding a listener to the ChannelPromise of the write of the first Http2HeadersFrame. A stream
closed event can be listened to by adding a listener to the Http2Stream2.closeFuture().
4) Add a simple Http2FrameCodecBuilder and implement the missing frame types.
Result:
1) The Http2MultiplexCodec supports outbound flow control.
2) The Http2FrameCodec API makes it easy for a user to manage custom stream specific state and to create
new outbound streams.
3) The Http2FrameCodec API is much cleaner and easier to work with. Hacks like the ChannelCarryingHeadersFrame
are no longer necessary.
4) The Http2FrameCodec now also supports PING and SETTINGS frames. The Http2FrameCodecBuilder allows the Http2FrameCodec
to use some of the rich features of the Http2ConnectionHandler API.
Motivation:
EpollDomainSocketGatheringWriteTest. testGatheringWriteBig takes on average about 20-25 seconds on the CI servers, but there is a 30 second timeout being applied which leads to what maybe false positive test failures.
Modifications:
- Increase the test timeout to 120 seconds globally and 60 seconds to wait for all writes per test
Result:
Higher timeout for potentially less false positive test failures.
Motivation:
When using the OIO transport we need to act on byte[] when writing and reading from / to the underyling Socket. So we should ensure we use heap buffers by default to reduce memory copies.
Modifications:
Ensure we prefer heap buffers by default for the OIO transport.
Result:
Possible less memory copies.
Motivation:
SocketGatherWriteTest has been observed to fail and it has numerous issues which when resolved may help reduce the test failures.
Modifications:
- A volatile counter and a spin/sleep loop is used to trigger test termination. Incrementing a volatile is generally bad practice and can be avoided in this situation. This mechanism can be replaced by a promise. This mechanism should also trigger upon exception or channel inactive.
- The TestHandler maintains an internal buffer, but it is not released. We now only create a buffer on the server side and release it after comparing the expected results.
- The composite buffer creation logic can be simplified, also the existing composite buffer doesn't take into account the buffer's reader index when building buf2.
Result:
Cleaner test.
Motivation:
SocketStringEchoTest has been observed to fail and it has numerous issues which when resolved may help reduce the test failures.
Modifications:
- A volatile counter and a spin/sleep loop is used to trigger test termination. Incrementing a volatile is generally bad practice and can be avoided in this situation. This mechanism can be replaced by a promise. This mechanism should also trigger upon exception or channel inactive.
- Asserts are done in the Netty threads. Although these should result in a exceptionCaught the test may not observe these failures because it is spinning waiting for the count to reach the desired value.
Result:
Cleaner test.
Motivation:
We need to ensure we always null out (or set) the address on the java.net.DatagramPacket when doing read or write operation as the same instance is used across different calls.
Modifications:
Null out the address if needed.
Result:
Ensure the correct remote address is used when connect / disconnect between calls and also mix these with calls that directly specify the remote address for adatagram packets.
Motivation:
We need to support SO_TIMEOUT for the OioDatagramChannel but we miss this atm as we not have special handling for it in the DatagramChannelConfig impl that we use. Because of this the following log lines showed up when running the testsuite:
20:31:26.299 [main] WARN io.netty.bootstrap.Bootstrap - Unknown channel option 'SO_TIMEOUT' for channel '[id: 0x7cb9183c]'
Modifications:
- Add OioDatagramChannelConfig and impl
- Correctly set SO_TIMEOUT in testsuite
Result:
Support SO_TIMEOUT for OioDatagramChannel and so faster execution of datagram related tests in the testsuite
Motivation:
NativeLibraryLoader has some code-duplication that can be removed.
Modifications:
Remove duplicated code and just use provided methods of PlatformDependent.
Result:
Less code duplication, fixes [#3756].
Motivation:
'insideString' and 'openBraces' need a proper handling when streaming
Json array over multiple writes and an element decoding was started but
not completed.
Related to #6969
Modifications:
If the idx is reset:
- 'insideString' has to be reset to 'false' in order to indicate that
array element will be decoded from the beginning
- 'openBraces' has to be reset to '1' to indicate that Json array
decoding is in progress.
Result:
Json array is properly decoded when in streaming mode
Motivation:
The javadocs of Http2RemoteFlowController.isWritable(...) are incorrect.
Modifications:
Update javadocs to reflect reality.
Result:
Correct javadocs.
Motivation:
The labels identifying the frame types in Http2FrameLogger are not always correct.
Modification:
- Correct the string labels to indicate the right frame type in Http2FrameLogger
Result:
Logs are more correct.
Motivation:
Issue #6695 states that there is an issue when writing empty content via HttpResponseEncoder.
Modifications:
Add two test-cases.
Result:
Verified that all works as expected.
Motivation:
We used asm 6.0_ALPHA when building on java9 as the latest stable release not works with java9. asm 6.0_BETA was just released so we should update.
Modifications:
Upgrade asm version
Result:
Not use ALPHA release anymore
Motivation:
Implementations of DuplexChannel delegate the shutdownOutput to the underlying transport, but do not take any action on the ChannelOutboundBuffer. In the event of a write failure due to the underlying transport failing and application may attempt to shutdown the output and allow the read side the transport to finish and detect the close. However this may result in an issue where writes are failed, this generates a writability change, we continue to write more data, and this may lead to another writability change, and this loop may continue. Shutting down the output should fail all pending writes and not allow any future writes to avoid this scenario.
Modifications:
- Implementations of DuplexChannel should null out the ChannelOutboundBuffer and fail all pending writes
Result:
More controlled sequencing for shutting down the output side of a channel.
Motivation:
In Http2ConnectionHandler we call flush(...) in channelReadComplete(...) to ensure we update the flow-controller and write stuff to the remote peer. We should better flip the order and so may be able to pick up more bytes.
Modifications:
Change order of calls.
Result:
Better performance
Motivation:
Its wasteful and also confusing that channelReadComplete() is called even if there was no message forwarded to the next handler.
Modifications:
- Only call ctx.fireChannelReadComplete() if at least one message was decoded
- Add unit test
Result:
Less confusing behavior. Fixes [#4312].
Motivation:
Now that the NativeLibraryLoader implicitly detects the shaded package prefix we no longer need the io.netty.packagePrefix system property.
Modifications:
- Remove io.netty.packagePrefix processing from NativeLibraryLoader
Result:
Code is cleaner.
Motivation:
We need to ensure we not try to load any conscrypt classes directly (which means without using reflection) in the same class that is used to check if conscrypt is available. This is needed as otherwise we will have the following problem when try to use netty on java7:
java.lang.UnsupportedClassVersionError: org/conscrypt/BufferAllocator : Unsupported major.minor version 52.0
at io.netty.handler.ssl.ConscryptJdkSslEngineInteropTest.checkConscrypt(ConscryptJdkSslEngineInteropTest.java:49)
This regression was introduced by 4448b8f42f599e79db1744cd8f5fdfee702c195e and detected on the CI when using:
mvn clean package -DtestJavaHome=$JAVA7_HOME
Modifications:
Move the detection code in an extra class and use it.
Result:
Works correctly also when using Java7.
Motivation:
We did not correctly handle connect() and disconnect() in EpollDatagramChannel / KQueueDatagramChannel and so the behavior was different compared to NioDatagramChannel.
Modifications:
- Correct implement connect and disconnect methods
- Share connect and related code
- Add tests
Result:
EpollDatagramChannel / KQueueDatagramChannel also supports correctly connect() and disconnect() methods.
Motivation:
Starting with 1.0.0.RC9, conscrypt supports a buffer allocator.
Modifications:
- Updated the creation process for the engine to pass through the
ByteBufAllocator.
- Wrap a ByteBufAllocator with an adapter for conscrypt.
- Added a property to optionally control whether conscrypt uses
Netty's buffer allocator.
Result:
Netty+conscrypt will support using Netty's ByteBufAllocator.