Motivation:
This reverts commit 3405aee2abf990d1f6078eb27da1b0035ab34769. This commit introduces a bug and the encoder no longer encodes FullMemcacheMessage objects correctly.
Modifications:
- Revert commit
Result:
Fixes https://github.com/netty/netty/issues/5197
Motivation:
Reduce nag warnings when compiling, make it easier for IDEs to display what's deprecated.
Modifications:
Added @Deprecated in a few places
Result:
No more warnings.
Motivation:
- `RedisBulkStringAggregator` raises errors for multiple null bulk strings.
- Null or empty bulk string has no content, but current `RedisDecoder` generates header and contents.
Modifications:
- Fix decoding null bulk string of `RedisDecoder` for `RedisBulkStringAggregator`.
Result:
- Fixes#5184.
Motivations
The test SniHandlerTest#testSniWithApnHandler() does not actually
involve SNI: given the client setup, the ClientHello in the form of hex
strings is not actually written to the wire, so the server never receives that.
We may need to write in somewhere else (e.g., channelActive()) instead of in
initChannel() in order for the hex strings to reach the server. So here
what's actually going on is an ordinary TLS C/S communication without SNI.
Modifications
The client part is modified to enable SNI by using an SslHandler with an
SSLEngine created by io.netty.handler.ssl.SslContext#newEngine(), where
the server hostname is specified. Also, more clauses are added to verify that
the SNI is indeed successful.
Results
Now the test verifies that both SNI and APN actually happen and succeed.
Motivation:
DefaultHttp2FrameReader will stop reading data if any exception is thrown. However some exceptions are recoverable and we will lose data if we don't continue reading. For example some stream errors are recoverable.
Modifications:
- DefaultHttp2FrameReader should attempt to continue reading if a stream error is encountered.
Result:
Fixes https://github.com/netty/netty/issues/5186
Motivation:
Checking if a key exists on a TreeMap has a Big O of "log 2 N",
doing it twice is not cheap.
Modifications:
Get the key instead which has the same cost and check if it is null.
Result:
Faster code due to one expensive operation removed.
Motivation:
- Add an example Redis client using codec-redis.
Modifications:
- Add an example Redis client that reads input from STDIN and writes output to STDOUT.
Result:
- Added an example Redis client using codec-redis.
Motivation:
Some handlers such as HttpObjectDecoder can emit more than one event per read()
which leads to problems in downstream handlers that expect only one event and hope
that ChannelConfig#setAutoRead(false) prevents further events being sent while they're
processing the one they've just received.
Modifications:
A new handler called FlowControlHandler that feeds off read() and isAutoRead() and acts
as a holding buffer if auto reading gets turned off and more events arrive while auto reading
is off.
Result:
Fixes issues such as #4895.
Motivation:
If a channel is deregistered from an NioEventLoop the associated SelectionKey is cancelled. If the NioEventLoop has yet to process a pending event as a result of that SelectionKey then the NioEventLoop will see the SelecitonKey is invalid and close the channel. The NioEventLoop should not close a channel if it is not registered with that NioEventLoop.
Modifications:
- NioEventLoop.processSelectedKeys should check that the channel is still registered to itself before closing the channel
Result:
NioEventLoop doesn't close a channel that is no longer registered to it when the SelectionKey is invalid
Fixes https://github.com/netty/netty/issues/5125
Motivation:
NioEventLoopGroup supports constructors which take an executor but EpollEventLoopGroup does not. EPOLL should be consistent with NIO where ever possible.
Modifications:
- Add constructors to EpollEventLoopGroup which accept an Executor as a parameter
Result:
EpollEventLoopGroup is more consistent with NioEventLoopGroup
Fixes https://github.com/netty/netty/issues/5161
Motivation:
Before release 4.1.0.Final we should update all our dependencies.
Modifications:
Update dependencies.
Result:
Up-to-date dependencies used.
Motivation:
We lately added ByteBuf.isReadOnly() which allows to detect if a buffer is read-only or not. We should add ByteBuf.asReadOnly() to allow easily access a read-only version of a buffer.
Modifications:
- Add ByteBuf.asReadOnly()
- Deprecate Unpooled.unmodifiableBuffer(Bytebuf)
Result:
More consistent api.
Motivation:
b112673554bafc1eccfd43913a3e8605337dd7fb added ChannelInputShutdownEvent support to ByteToMessageDecoder but missed updating the code for ReplayingDecoder. This has the effect:
- If a ChannelInputShutdownEvent is fired ByteToMessageDecoder (the super-class of ReplayingDecoder) will call the channelInputClosed(...) method which will pass the incorrect buffer to the decode method of ReplayingDecoder.
Modifications:
Share more code between ByteToMessageDEcoder and ReplayingDecoder and so also support ChannelInputShutdownEvent correctly in ReplayingDecoder
Result:
ChannelInputShutdownEvent is corrrectly handle in ReplayingDecoder as well.
Motivation:
We missed to reset the decoder when asked for it in HttpObjectDecoder and so sometimes could produce more then one LastHttpContent in a sequence during channelInactive.
This did show up as AssertionError:
22:22:35.499 [nioEventLoopGroup-3-1] WARN i.n.channel.DefaultChannelPipeline - An exceptionCaught() event was fired, and it reached at the tail of the pipeline. It usually means the last handler in the pipeline did not handle the exception.
java.lang.AssertionError: null
at io.netty.handler.codec.http.HttpObjectAggregator.decode(HttpObjectAggregator.java:205) ~[classes/:na]
at io.netty.handler.codec.http.HttpObjectAggregator.decode(HttpObjectAggregator.java:57) ~[classes/:na]
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:89) ~[classes/:na]
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:292) [classes/:na]
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:278) [classes/:na]
at io.netty.channel.CombinedChannelDuplexHandler$DelegatingChannelHandlerContext.fireChannelRead(CombinedChannelDuplexHandler.java:428) [classes/:na]
at io.netty.handler.codec.ByteToMessageDecoder.fireChannelRead(ByteToMessageDecoder.java:277) [classes/:na]
at io.netty.handler.codec.ByteToMessageDecoder.channelInputClosed(ByteToMessageDecoder.java:343) [classes/:na]
at io.netty.handler.codec.ByteToMessageDecoder.channelInactive(ByteToMessageDecoder.java:309) [classes/:na]
at io.netty.handler.codec.http.HttpClientCodec$Decoder.channelInactive(HttpClientCodec.java:228) [classes/:na]
at io.netty.channel.CombinedChannelDuplexHandler.channelInactive(CombinedChannelDuplexHandler.java:213) [classes/:na]
...
Modifications:
Correctly reset decoder.
Result:
Correctly only produce one LastHttpContent per sequence.
Motivation:
As we only provide tcnative jars for 64bit we should enforce 64bit when try to build netty, to make it easier for the user to understand why the build fails.
Modifications:
Add enforce rule.
Result:
Ensure 64bit is used when build netty.
We need to check if this handler was removed before continuing with decoding.
If it was removed, it is not safe to continue to operate on the buffer. This was already fixed for ByteToMessageDecoder in 4cdbe3928424b5b38695967c0cc1062dccf1a83c but missed for ReplayingDecoder.
Modifications:
Check if decoder was removed after fire messages through the pipeline.
Result:
No illegal buffer access when decoder was removed.
Motivation:
When FixedCompositeByteBuf was constructed with new ByteBuf[0] and IndexOutOfboundsException was thrown.
Modifications:
Fix constructor
Result:
No more exception
Motivation:
We should not cache the SwappedByteBuf in AbstractByteBuf to reduce the memory footprint.
Modifications:
Not cache the SwappedByteBuf.
Result:
Less memory footprint.
Motivation:
Some ByteBuf implementations do not override all necessary methods,
which can lead to potentially sub-optimal behavior.
Also, SlicedByteBuf does not perform the range check correctly due to
missing overrides.
Modifications:
- Add missing overrides
- Use unwrap() instead of direct member access in derived buffers for
consistency
- Merge unwrap0() into unwrap() using covariant return type
- Deprecate AbstractDerivedByteBuf and its subtypes, because they were
not meant to be public
Result:
Correctness
Motivation:
Some applications may use alternative methods of loading the epoll JNI symbols. We should support this use case.
Modifications:
Attempt to use a side effect free JNI method. If that fails, load the library.
Result:
Fixes#5122
Motivation:
Some applications may use alternative methods of loading the tcnative JNI symbols. We should support this use case.
Modifications:
Separate the loading and initialzation of the tcnative library so that each can fail independently.
Result:
Fixes#5043
Motivation:
Revert d0943dcd30b08eb4043aeb88fd983bcebf8c3432. Delaying the notification of writability change may lead to notification being missed. This is a ABA type of concurrency problem.
Modifications:
- Revert d0943dcd30b08eb4043aeb88fd983bcebf8c3432.
Result:
channelWritabilityChange will be called on every change, and will not be suppressed due to ABA scenario.
Motivation:
ByteBuf.readBytes(...) uses Unpooled.buffer(...) internally which will use a heap ByteBuf and also not able to make use of the allocator which may be pooled. We should better make use of the allocator.
Modifications:
Use the allocator for thenew buffer.
Result:
Take allocator into account when copy bytes.
Motiviation:
Sometimes it is useful to dump the status of the PooledByteBufAllocator and log it. Doing this is currently a bit cumbersome as the user needs to basically iterate through all the metrics and compose the String. we would better provide an easy way to do this.
Modification:
Add dumpStats() method.
Result:
Easier to get a view into the status of the allocator.
Motivation:
Sometimes a user only has access to a preconfigured SSLContext but still would like to use our ssl sub-system. For this situations it would be very useful if the user could create a JdkSslContext instance from an existing SSLContext.
Modifications:
- Create new public constructors in JdkSslContext which allow to wrap an existing SSLContext and make the class non-abstract
- Mark JdkSslServerContext and JdkSslClientContext as deprecated as the user should not directly use these.
Result:
It's now possible to create an JdkSslContext from an existing SSLContext.
Motivation:
We missed to correctly retrieve the localAddress() after we called Socket.connect(..) and so the user would always see an incorrect address when calling EpollSocketChannel.localAddress().
Modifications:
- Ensure we always retrieve the localAddress() after we called Socket.connect(...) as only after this we will be able to receive the correct address.
- Add unit test
Result:
Correct and consistent behaviour across different transports (NIO/OIO/EPOLL).
Motivation:
PoolChunkList.allocate(...) should return false without the need to walk all the contained PoolChunks when the requested capacity is larger then the capacity that can be allocated out of the PoolChunks in respect to the minUsage() and maxUsage() of the PoolChunkList.
Modifications:
Precompute the maximal capacity that can be allocated out of the PoolChunks that are contained in the PoolChunkList and use this to fast return from the allocate(...) method if an allocation capacity larger then that is requested.
Result:
Faster detection of allocations that can not be handled by the PoolChunkList and so faster allocations in general via the PoolArena.
Motivation:
To better understand how much memory is used by Netty for ByteBufs it is useful to understand how many bytes are currently active (allocated) per PoolArena.
Modifications:
- Add PoolArenaMetric.numActiveBytes()
Result:
The user is able to get better insight into the PooledByteBufAllocator.
Motivation:
To make it easier to understand PoolChunk and PoolArena we should cleanup duplicated code.
Modifications:
- Move reused code into methods
- Use Math.max(...)
Result:
Cleaner code and easier to understand.
Motivation:
We use ByteBuf.readBytes(int) in various places where we could either remove it completely or use readSlice(int).retain().
Modifications:
- Remove ByteBuf.readBytes(int) when possible or replace by readSlice(int).retain().
Result:
Faster code.
Motivation:
When doing a normal allocation in PoolArena we also tried to allocate out of the PoolChunkList that only contains completely full PoolChunks. This makes no sense as these are full anyway so an allocation will never work here and just gives a perf hit as we need to walk the whole list of PoolChunks in the list.
Modifications:
Not try to allocate from PoolChunkList that only contains full PoolChunks
Result:
Faster allocation times when a new PoolChunk must be created.
Motivation:
Commit 0bc93dd introduced a potential assertion failure, if the deprecated method would be used.
Modifications:
Fix the potential assertion error.
Result:
Regression removed
Motivation:
441aa4c5756b975e8ee1dccbe2902633e0f587e8 conditionally set the readFlag based upon if maybeMoreDataToRead is set. It is possible that the read flag will not be set, and nothing will be read by executeEpollInReadyRunnable and no actual data will be read even though the user requested it.
Modifications:
- Always set the readFlag in doBeginRead
- Make it so only a single epollInReadyRunnable can execute for a channel at a time
Result:
Less chance of missing read events in EPOLL transport.
Motivation:
There is one extra } for WriteBufferWaterMark's javadoc:
{@linkplain #high} high water mark}
The generated javadoc will show the content: "the high high water mark}"
Modifications:
remove the }
Result:
The generated javadoc will show the content: "the high water mark" instead of "the high high water mark}"
Motivation:
It's better to make all InternalLoggerFactory implementations be singletons according to the discussions in #5047
Modifications:
Make all InternalLoggerFactory implementations be singletons and hide the construtors.
Result:
All InternalLoggerFactory implementations be singletons.