Motivation:
We forked a new process to detect if the program is run by root. We should better just use user.name system property
Modifications:
- Change PlatformDependent.isRoot0() to read the user.name system property to detect if root runs the program and rename it to maybeSuperUser0().
- Rename PlatformDependent.isRoot() to maybeSuperUser() and let it init directly in the static block
Result:
Less heavy way to detect if the program is run by root.
Make the FileRegion comments about which transports are supported more accurate.
Also, eleminate any outstanding references to FileRegion.transfered as the method was renamed for spelling.
Modifications:
Class-level comment on FileRegion, can call renamed method.
Result:
More accurate documentation and less calls to deprecated methods.
Motivation:
There are numerous usages of internalNioBuffer which hard code 0 for the index when the intention was to use the readerIndex().
Modifications:
- Remove hard coded 0 for the index and use readerIndex()
Result:
We are less susceptible to using the wrong index, and don't make assumptions about the ByteBufAllocator.
Motivation:
Calling a static method is faster then dynamic
Modifications:
Add 'static' keyword for methods where it missed
Result:
A bit faster method calls
Motivation:
When "Too many open files" happens,the URLClassLoader cannot do any classloading because URLClassLoader need a FD for findClass. Because of this the anonymous inner class that is created to re-enable auto read may cause a problem.
Modification:
Pre-create Runnable that is scheduled and so ensure it is not lazy loaded.
Result:
No more problems when try to recover.
Motivation:
We have our own ThreadLocalRandom implementation to support older JDKs . That said we should prefer the JDK provided when running on JDK >= 7
Modification:
Using ThreadLocalRandom implementation of the JDK when possible.
Result:
Make use of JDK implementations when possible.
Motivation:
SelectedSelectionKeySet currently uses 2 arrays internally and users are expected to call flip() to access the underlying array and switch the active array. However we do not concurrently use 2 arrays at the same time and we can get away with using a single array if we are careful about when we reset the elements of the array.
Modifications:
- Introduce SelectedSelectionKeySetSelector which wraps a Selector and ensures we reset the underlying SelectedSelectionKeySet data structures before we select
- The loop bounds in NioEventLoop#processSelectedKeysOptimized can be defined more precisely because we know the real size of the underlying array
Result:
Fixes https://github.com/netty/netty/issues/6058
Motiviation:
Simplify implementation of compareTo/equals/hashCode for ChannelIds.
Modifications:
We simplfy the hashCode implementation for DefaultChannelId by not
making it random, but making it based on the underlying data. We fix the
compareTo implementation for DefaultChannelId by using lexicographic
comparison of the underlying data array. We fix the compareTo
implementation for CustomChannelId to avoid the possibility of overflow.
Result:
Cleaner code that is easier to maintain.
Motivation:
Initialization of PlatformDependent0 fails on Java 9 in static initializer when calling setAccessible(true).
Modifications:
Add RefelectionUtil which can be used to safely try if setAccessible(true) can be used or not and if not fail back to non reflection.
Result:
Fixed [#6345]
Motivation:
EPOLL annotates some exceptions to provide the remote address, but the original exception is not preserved. This may make determining a root cause more difficult. The static EPOLL exceptions references the native method that failed, but does not provide a description of the actual error number. Without the description users have to know intimate details about the native calls and how they may fail to debug issues.
Modifications:
- annotated exceptions should preserve the original exception
- static exceptions should include the string description of the expected errno
Result:
EPOLL exceptions provide more context and are more useful to end users.
Motivation:
EpollRecvByteAllocatorHandle intends to override the meaning of "maybe more data to read" which is a concept also used in all existing implementations of RecvByteBufAllocator$Handle but the interface doesn't support overriding. Because the interfaces lack the ability to propagate this computation EpollRecvByteAllocatorHandle attempts to implement a heuristic on top of the delegate which may lead to reading when we shouldn't or not reading data.
Modifications:
- Create a new interface ExtendedRecvByteBufAllocator and ExtendedHandle which allows the "maybe more data to read" between interfaces
- Deprecate RecvByteBufAllocator and change all existing implementations to extend ExtendedRecvByteBufAllocator
- transport-native-epoll should require ExtendedRecvByteBufAllocator so the "maybe more data to read" can be propagated to the ExtendedHandle
Result:
Fixes https://github.com/netty/netty/issues/6303.
Motivation:
Result of validatePromise() is always inverted with if (!validatePromise()).
Modification:
validatePromise() renamed to isNotValidPromise() and now returns inverted state so you don't need to invert state in conditions. Also name is now more meaningful according to returned result.
Added more tests for validatePromise corner cases with Exceptions.
Result:
Code easier to read. No need in inverted result.
Motivation:
We used various mocking frameworks. We should only use one...
Modifications:
Make usage of mocking framework consistent by only using Mockito.
Result:
Less dependencies and more consistent mocking usage.
Motivation:
NioDatagramChannel fails a write with NotYetConnectedException when the DatagramChannel was not yet connected and a ByteBuf is written. The same should be done for OioDatagramChannel as well.
Modifications:
Make OioDatagramChannel consistent with NioDatagramChannel
Result:
Correct and consistent implementations of DatagramChannel
Motivation:
Currently Netty does not wrap socket connect, bind, or accept
operations in doPrivileged blocks. Nor does it wrap cases where a dns
lookup might happen.
This prevents an application utilizing the SecurityManager from
isolating SocketPermissions to Netty.
Modifications:
I have introduced a class (SocketUtils) that wraps operations
requiring SocketPermissions in doPrivileged blocks.
Result:
A user of Netty can grant SocketPermissions explicitly to the Netty
jar, without granting it to the rest of their application.
Motivation:
https://github.com/netty/netty/pull/6042 only addressed PlatformDependent#getSystemClassLoader but getClassLoader is also called in an optional manner in some common code paths but fails to catch a general enough exception to continue working.
Modifications:
- Calls to getClassLoader which can continue if results fail should catch Throwable
Result:
More resilient code in the presense of restrictive class loaders.
Fixes https://github.com/netty/netty/issues/6246.
Motivation:
We not warned about not-supported ChannelOptions when set the options for the ServerChannel.
Modifications:
- Share code for setting ChannelOptions during bootstrap
Result:
Warning is logged when a ChannelOption is used that is not supported during bootstrap a Channel. See also [#6192]
Motivation:
The comment on AbstractChannelHandlerContext.invokeHandler() is incorrect and missleading. See [#6177]
Modifications:
Change true to false to correct the comment.
Result:
Fix missleading and incorrect comment.
Motivation:
`SimpleChannelPool` subclasses are likely to override the `connectChannel` method, and are likely to clobber the cloned `Bootstrap` handler in the process. To allow subclasses to properly notify the pool listener of new connections, we should expose (at least) the `handler` property of the pool to subclasses.
Modifications:
Expose `SimpleChannelPool` properties to subclasses via `protected` getters.
Result:
Subclasses can now use the bootstrap, handler, health checker, and health-check-on-release preoperties from their superclass.
Motivation:
DefaultChannelId provides a regular expression which validates if a user provided MAC address is valid. This regular expression may allow invalid MAC addresses and also not allow valid MAC addresses.
Modifications:
- Introduce a MacAddressUtil#parseMac method which can parse and validate the MAC address at the same time. The regular expression check before hand is additional overhead if we have to parse the MAC address.
Result:
Fixes https://github.com/netty/netty/issues/6132.
Motivation:
On some platforms the PID my be bigger then 4194304 so we should not limit it to 4194304.
Modifications:
Only check that the PID is a valid Integer
Result:
No more warnings on systems where the PID is bigger then 4194304.
Motivation:
In later Java8 versions our Atomic*FieldUpdater are slower then the JDK implementations so we should not use ours anymore. Even worse the JDK implementations provide for example an optimized version of addAndGet(...) using intrinsics which makes it a lot faster for this use-case.
Modifications:
- Remove methods that return our own Atomic*FieldUpdaters.
- Use the JDK implementations everywhere.
Result:
Faster code.
Motivation:
e102a008b6 changed a conditional where previously the NIO ServerChannel would not be closed in the event of an exception.
Modifications:
- Restore the logic prior to e102a008b6 which does not automatically close ServerChannels for IOExceptions
Result:
NIO ServerChannel doesn't close automatically for an IOException.
Motivation:
We should not catch ConcurrentModificationException as this can never happen because things are executed on the EventLoop thread.
Modifications:
Remove try / catch
Result:
Cleaner code.
Modifications:
LocalChannel#releaseInboundBuffers should always clear/release the queue and set readInProgress to false
Result:
LocalChannel queue is more reliably cleaned up.
Motivation:
LocalChannel attempts to close its peer socket when ever it is closed. However if the channels are on different EventLoops we may attempt to process events for the peer channel on the wrong EventLoop.
Modifications:
- Ensure the close process ensures we are on the correct thread before accessing data
Result:
More correct LocalChannel close code.
Motivation:
PlatformDependent#getSystemClassLoader may throw a wide variety of exceptions based upon the environment. We should handle all exceptions and continue initializing the slow path if an exception occurs.
Modifications:
- Catch Throwable in cases where PlatformDependent#getSystemClassLoader is used
Result:
Fixes https://github.com/netty/netty/issues/6038
Motivation:
Netty provides a adaptor from ByteBuf to Java's InputStream interface. The JDK Stream interfaces have an explicit lifetime because they implement the Closable interface. This lifetime may be differnt than the ByteBuf which is wrapped, and controlled by the interface which accepts the JDK Stream. However Netty's ByteBufInputStream currently does not take reference count ownership of the underlying ByteBuf. There may be no way for existing classes which only accept the InputStream interface to communicate when they are done with the stream, other than calling close(). This means that when the stream is closed it may be appropriate to release the underlying ByteBuf, as the ownership of the underlying ByteBuf resource may be transferred to the Java Stream.
Motivation:
- ByteBufInputStream.close() supports taking reference count ownership of the underyling ByteBuf
Result:
ByteBufInputStream can assume reference count ownership so the underlying ByteBuf can be cleaned up when the stream is closed.
Motivation:
To guard against the case that a user will enqueue a lot of empty or small buffers and so raise an OOME we need to also take the overhead of the ChannelOutboundBuffer / PendingWriteQueue into account when detect if a Channel is writable or not. This is related to #5856.
Modifications:
When calculate the memory for an message that is enqueued also add some extra bytes depending on the implementation.
Result:
Better guard against OOME.
Motivation
It's possible to extend LocalChannel as well as LocalServerChannel but the LocalServerChannel's serve(peer) method is hardcoded to create only instances of LocalChannel.
Modifications
Add a protected factory method that returns by default new LocalChannel(...) but users may override it to customize it.
Result
It's possible to customize the LocalChannel instance on either end of the virtual connection.
Motivation:
Some unit tests in SingleThreadEventLoopTest rely upon Thread.sleep for sequencing events between threads. This can be unreliable and result in spurious test failures if thread scheduling does not occur in a fair predictable manner.
Modifications:
- Reduce the reliance on Thread.sleep in SingleThreadEventLoopTest
Result:
Fixes https://github.com/netty/netty/issues/5851
Motivation:
The local transport is used to communicate in the same JVM so we should use heap buffers.
Modifications:
Use heapbuffers by default if not requested otherwise.
Result:
No allocating of direct buffers by default when using local transport
Motivation:
When using java.nio.DatagramChannel we should not close the channel when a SocketException was thrown as we can still use the channel.
Modifications:
Not close the Channel when SocketException is thrown
Result:
More robust and correct handling of exceptions when using NioDatagramChannel.
Motivation:
If an exception is thrown while processing the ready channels in the EventLoop we should still run all tasks as this may allow to recover. For example a OutOfMemoryError may be thrown and runAllTasks() will free up memory again. Beside this we should also ensure we always allow to shutdown even if an exception was thrown.
Modifications:
- Call runAllTasks() in a finally block
- Ensure shutdown is always handles.
Result:
More robust EventLoop implementations for NIO and Epoll.
Motivation:
We should better first process OP_WRITE before OP_READ as this may allow us to free memory in a faster fashion for previous queued writes.
Modifications:
Process OP_WRITE before OP_READ
Result:
Free memory faster for queued writes.
Motivation:
the build doesnt seem to enforce this, so they piled up
Modifications:
removed unused import lines
Result:
less unused imports
Signed-off-by: radai-rosenblatt <radai.rosenblatt@gmail.com>
the implicit #fireChannelReadComplete() in EmbeddedChannel#writeInbound().
Motivation
We use EmbeddedChannels to implement a ProxyChannel of some sorts that shovels
messages between a source and a destination Channel. The latter are real network
channels (such as Epoll) and they may or may not be managed in a ChannelPool. We
could fuse both ends directly together but the EmbeddedChannel provides a nice
disposable section of a ChannelPipeline that can be used to instrument the messages
that are passing through the proxy portion.
The ideal flow looks abount like this:
source#channelRead() -> proxy#writeOutbound() -> destination#write()
source#channelReadComplete() -> proxy#flushOutbound() -> destination#flush()
destination#channelRead() -> proxy#writeInbound() -> source#write()
destination#channelReadComplete() -> proxy#flushInbound() -> source#flush()
The problem is that #writeOutbound() and #writeInbound() emit surplus #flush()
and #fireChannelReadComplete() events which in turn yield to surplus #flush()
calls on both ends of the pipeline.
Modifications
Introduce a new set of write methods that reain the same sematics as the #write()
method and #flushOutbound() and #flushInbound().
Result
It's possible to implement the above ideal flow.
Fix for EmbeddedChannel#ensureOpen() and Unit Tests for it
Some PR stuff.
Motivation:
To make it easier to debug why notification of a promise failed we should log extra info and make it consistent.
Modifications:
- Create a new PromiseNotificationUtil that has static methods that can be used to try notify a promise and log.
- Reuse this in AbstractChannelHandlerContext, ChannelOutboundBuffer and PromiseNotifier
Result:
Easier to debug why a promise could not be notified.
Motivation:
RFC7871 defines an extension which allows to request responses for a given subset.
Modifications:
- Add DnsOptPseudoRrRecord which can act as base class for extensions based on EDNS(0) as defined in RFC6891
- Add DnsOptEcsRecord to support the Client Subnet in DNS Queries extension
- Add tests
Result:
Client Subnet in DNS Queries extension is now supported.
Motivation:
For use cases that demand frequent updates of the write watermarks, an
API that requires immutable WriteWaterMark objects is not ideal, as it
implies a lot of object allocation.
For example, the HTTP/2 child channel API uses write watermarks for outbound
flow control and updates the write watermarks on every DATA frame write.
Modifications:
Remote @Deprecated tag from primitive getters and setters, however the corresponding
channel options remain deprecated.
Result:
Primitive getters and setters for write watermarks are no longer marked @Deprecated.
Motivation:
The JDK implementation of SocketChannel has an internal state that is tracked for its operations. Because of this we need to ensure we call finishConnect() before try to call read(...) / write(...) as otherwise it may produce a NotYetConnectedException.
Modifications:
First process OP_CONNECT flag.
Result:
No more possibility of NotYetConnectedException because OP_CONNECT is handled not early enough when processing interestedOps for a Channel.
Motivation:
The DefaultEventLoopGroup class extends MultithreadEventExecutorGroup but doesn't expose the ctor variants that accept a custom Executor like NioEventLoopGroup and EpollEventLoopGroup do.
Modifications:
Add missing constructor.
Result:
Be able to use custom Executor with DefaultEventLoopGroup.
Motivation:
When attempting to set the selectedKeys fields on the selector
implementation, JDK 9 can throw an inaccessible object exception.
Modications:
Catch and log this exception as an possible course of action if the
sun.nio.ch package is not exported from java.base.
Result:
The selector replacement will fail gracefully as an expected course of
action if the sun.nio.ch package is not exported from java.base.
Motivation:
The NIO transport used an IllegalStateException if a user tried to issue another connect(...) while the connect was still in process. For this case the JDK specified a ConnectPendingException which we should use. The same issues exists in the EPOLL transport. Beside this the EPOLL transport also does not throw the right exceptions for ENETUNREACH and EISCONN errno codes.
Modifications:
- Replace IllegalStateException with ConnectPendingException in NIO and EPOLL transport
- throw correct exceptions for ENETUNREACH and EISCONN in EPOLL transport
- Add test case
Result:
More correct error handling for connect attempts when using NIO and EPOLL transport
Motivation:
The API documentation in ChannelConfig states that a a channel is writable,
if the number of pending bytes is below the low watermark and a
channel is not writable, if the number of pending bytes exceeds the high
watermark.
Therefore, we should use < operators instead of <= as well as > instead of >=.
Using <= and >= is also problematic, if the low watermark is equal to the high watermark,
as then a channel could be both writable and unwritable with the same number of pending
bytes (depending on whether remove() or addMessage() is called first).
The use of <= and >= was introduced in PR https://github.com/netty/netty/pull/3036, but
I don't understand why, as there doesn't seem to have been any discussion around that.
Modifications:
Use < and > operators instead of <= and >=.
Result:
High and low watermarks are treated as stated in the API docs.
Motivation:
We need to ensure we also call fireChannelActive() if the Channel is directly closed in a ChannelFutureListener that is belongs to the promise for the connect. Otherwise we will see missing active events.
Modifications:
Ensure we always call fireChannelActive() if the Channel was active.
Result:
No missing events.
Motivation:
We use often javachannel().socket().* in NIO as these methods exists in java6. The problem is that these will throw often very general Exceptions (Like SocketException) while it is more expected to throw the Exceptions listed in the nio interfaces. When possible we should use the new methods available in java7+ which throw the correct exceptions.
Modifications:
Check for java version and depending on it using the socket or the javachannel.
Result:
Throw expected Exceptions.
Motivation:
To make it easier to debug connect exceptions we create new exceptions which also contain the remote address. For this we basically created a new instance and call setStackTrace(...). When doing this we pay an extra penality because it calls fillInStackTrace() when calling the super constructor.
Modifications:
Create special sub-classes of Exceptions that override the fillInStackTrace() method and so eliminate the overhead.
Result:
Less overhead when "annotate" connect exceptions.
Motivation:
Comments stating that AUTO_CLOSE will be removed in Netty 5.0 are wrong,
as there is no Netty 5.0.
Modifications:
Removed comment.
Result:
No more references to Netty 5.0
Motivation:
PendingWriteQueue should guard against re-entrant writes once removeAndWriteAll() is run.
Modifications:
Continue writing until queue is empty.
Result:
Correctly guard against re-entrance.
Motivation:
Instrumenting the NIO selector implementation requires special
permissions. Yet, the code for performing this instrumentation is
executed in a manner that would require all code leading up to the
initialization to have the requisite permissions. In a restrictive
environment (e.g., under a security policy that only grants the
requisite permissions the Netty transport jar but not to application
code triggering the Netty initialization), then instrumeting the
selector will not succeed even if the security policy would otherwise
permit it.
Modifications:
This commit marks the necessary blocks as privileged. This enables
access to the necessary resources for instrumenting the selector. The
idea is that we are saying the Netty code is trusted, and as long as the
Netty code has been granted the necessary permissions, then we will
allow the caller access to these resources even though the caller itself
might not have the requisite permissions.
Result:
The selector can be instrumented in a restrictive security environment.
Motivation:
Writing to a system property requires permissions. Yet the code for
setting sun.nio.ch.bugLevel is not marked as privileged. In a
restrictive environment (e.g., under a security policy that only grants
the requisite permissions the Netty transport jar but not to application
code triggering the Netty initialization), writing to this system
property will not succeed even if the security policy would otherwise
permit it.
Modifications:
This commt marks the necessary code block as privileged. This enables
writing to this system property. The idea is that we are saying the
Netty code is trusted, and as long as the Netty code has been granted
the necessary permissions, then we will allow the caller access to these
resources even though the caller itself might not have the requisite
permissions.
Result:
The system property sun.nio.ch.bugLevel can be written to in a
restrictive security environment.
Motivation:
If the user uses 0 as quiet period we should shutdown without any delay if possible.
Modifications:
Ensure we not introduce extra delay when a shutdown quit period of 0 is used.
Result:
EventLoop shutdown as fast as expected.
Motivation:
At the moment we call initChannel(...) in the channelRegistered(...) method which has the effect that if another ChannelInitializer is added within the initChannel(...) method the ordering of the added handlers is not correct and surprising. This is as the whole initChannel(...) method block is executed before the initChannel(...) block of the added ChannelInitializer is handled.
Modifications:
Call initChannel(...) from within handlerAdded(...) if the Channel is registered already. This is true in all cases for our DefaultChannelPipeline implementation. This way the ordering is always as expected. We still keep the old behaviour as well to not break code for other ChannelPipeline implementations (if someone ever wrote one).
Result:
Correct and expected ordering of ChannelHandlers.
Motivation:
When we try to close the Channel due a timeout we need to ensure we not log if the notification of the promise fails as it may be completed in the meantime.
Modifications:
Add another constructor to ChannelPromiseNotifier and PromiseNotifier which allows to log on notification failure.
Result:
No more miss-leading logs.
Motivation:
I received a report the its not possible to add another ChannelInitialiter in the initChannel(...) method, so we should add a test case for it.
Modifications:
Added testcase.
Result:
Validate that all works as expected.
Motivation:
When a ChannelInitializer is used via ServerBootstrap.handler(...) the users handlers may be added after the internal ServerBootstrapAcceptor. This should not happen.
Modifications:
Delay the adding of the ServerBootstrapAcceptor until the initChannel(....) method returns.
Result:
Correct order of handlers in the ServerChannels ChannelPipeline.
Motivation:
We used Promise.setFailure(...) when fail a Promise in SimpleChannelPool. As this happens in multiple levels this can result in stackoverflow as setFailure(...) may throw an IllegalStateException which then again is propergated.
Modifications:
Use tryFailure(...)
Result:
No more possibility to cause a stack overflow when failing the promise.
Motivation:
The SimpleChannelPool#notifyConnect() method will leak Channels if the user cancelled the Promise in between.
Modifications:
Release the channel if the Promise was complete before.
Result:
No more channel leaks.
Motiviation:
DefaultChannelId attempts to acquire a default process ID by determining
the process PID. However, to do this it attempts to punch through to the
system classloader, a permission that in the face of a restrictive
security manager is unlikely to be granted. Looking past this, it then
attempts to load a declared method off a reflectively loaded class,
another permission that is not likely to be granted in the face of a
restrictive security manager. However, neither of these permissions are
necessary as the punching through to the system security manager is
completely unneeded, and there is no need to load a public method as a
declared method.
Modifications:
Instead of punching through to the system classloader requiring
restricted permissions, we can just use current classloader. To address
the access declared method permission, we instead just reflectively
obtain the desired public method via Class#getMethod.
Result:
Acquiring the default process ID from the PID will succeed without
requiring the runtime permissions "getClassLoader" and
"accessDeclaredMembers".
Motivation:
In 4.0 AbstractNioByteChannel has a default of 16 max messages per read. However in 4.1 that constraint was applied at the NioSocketChannel which is not equivalent. In 4.1 AbstractEpollStreamChannel also did not have the default of 16 max messages per read applied.
Modifications:
- Make Nio consistent with 4.0
- Make Epoll consistent with Nio
Result:
Nio and Epoll both have consistent ChannelMetadata and are consistent with 4.0.
Motivation:
This change is part of the change done in PR #5395 to provide an `AUTO_FLUSH` capability.
Splitting this change will enable to try other ways of implementing `AUTO_FLUSH`.
Modifications:
Two methods:
```java
void executeAfterEventLoopIteration(Runnable task);
boolean removeAfterEventLoopIterationTask(Runnable task);
```
are added to `SingleThreadEventLoop` class for adding/removing a task to be executed at the end of current/next iteration of this `eventloop`.
In order to support the above, a few methods are added to `SingleThreadEventExecutor`
```java
protected void afterRunningAllTasks() { }
```
This is invoked after all tasks are run for this executor OR if the passed timeout value for `runAllTasks(long timeoutNanos)` is expired.
Added a queue of `tailTasks` to `SingleThreadEventLoop` to hold all tasks to be executed at the end of every iteration.
Result:
`SingleThreadEventLoop` now has the ability to execute tasks at the end of an eventloop iteration.
Motivation:
For some use-cases it would be useful to know the number of bytes queued in the PendingWriteQueue without the need to dequeue them.
Modifications:
Add PendingWriteQueue.bytes().
Result:
Be able to get the number of bytes queued.
Motivation:
Commit 4c048d069d moved the logic of calling handlerAdded(...) to the channelRegistered(...) callback of the head of the DefaultChannelPipeline. Unfortunatlly this may execute the callbacks to late as a user may add handlers to the pipeline in the ChannelFutureListener attached to the registration future. This can lead to incorrect ordering.
Modifications:
Ensure we always invoke ChannelHandler.handlerAdded(...) for all handlers before the registration promise is notified.
Result:
Not possible of incorrect ordering or missed events.
Motivation:
We pinned the EventExecutor for a Channel in DefaultChannelPipeline. Which means if the user added multiple handlers with the same EventExecutorGroup to the ChannelPipeline it will use the same EventExecutor for all of these handlers. This may be unexpected and even not what the user wants. If the user want to use the same one for all of them it can be done by obtain an EventExecutor and pass the same instance to the add methods. Because of this we should allow to not pin.
Modifications:
Allow to disable pinning of EventExecutor for Channel based on EventExecutorGroup via ChannelOption.
Result:
Less confusing and more flexible usage of EventExecutorGroup when adding ChannelHandlers to the ChannelPipeline.
Motivation
When I override ChannelHandler methods I usually (always) refire events myself via
ChannelHandlerContext instead of relieing on calling the super method (say
`super.write(ctx, ...)`). This works great and the IDE actually auto completes/generates
the right code for it except `#fireUserEventTriggered()` and `#userEventTriggered()`
which have a mismatching argument names and I have to manually "intervene".
Modification
Rename `ChannelHandlerContext#fireUserEventTriggered()` argument from `event` to `evt`
to match its handler counterpart.
Result
The IDE's auto generated code will reference the correct variable.
Motivation:
In commit f984870ccc I made a change which operated under invalide assumption that tasks executed by an EventExecutor will always be processed in a serial fashion. This is true for SingleThreadEventExecutor sub-classes but not part of the EventExecutor interface contract.
Because of this change implementations of EventExecutor which not strictly execute tasks in a serial fashion may miss events before handlerAdded(...) is called. This is strictly speaking not correct as there is not guarantee in this case that handlerAdded(...) will be called as first task (as there is no ordering guarentee).
Cassandra itself ships such an EventExecutor implementation which has no strict ordering to spread load across multiple threads.
Modifications:
- Add new OrderedEventExecutor interface and let SingleThreadEventExecutor / EventLoop implement / extend it.
- Only expose "restriction" of skipping events until handlerAdded(...) is called for OrderedEventExecutor implementations
- Add ThreadPoolEventExecutor implementation which executes tasks in an unordered fashion. This is used in added unit test but can also be used for protocols which not expose an strict ordering.
- Add unit test.
Result:
Resurrect the possibility to implement an EventExecutor which does not enforce serial execution of events and be able to use it with the DefaultChannelPipeline.
Motivation:
We should make it clear that each acquired Channel needs to be released in all cases.
Modifications:
More clear javadocs.
Result:
Harder for users to leak Channel.
Motivation:
The field can be read from arbitrary threads via Channel.(isWritable()|bytesBeforeWritable()|bytesBeforeUnwritable()), WriteAndFlushTask.newInstance(), PendingWriteQueue, etc.
Modifications:
Make AbstractChannel.outboundBuffer volatile.
Result:
More correct in a concurrent use case.
Motivation:
We used future in many method of ChannelDuplexHandler as argument name of ChannelPromise. We should make it more consistent and correct.
Modifications:
Replace future with promise.
Result:
More correct and consistent naming.
Motiviation:
Sometimes it is useful to allow to specify a custom strategy to handle rejected tasks. For example if someone tries to add tasks from outside the eventloop it may make sense to try to backoff and retries and so give the executor time to recover.
Modification:
Add RejectedEventExecutor interface and implementations and allow to inject it.
Result:
More flexible handling of executor overload.
Motivation:
To restrict the memory usage of a system it is sometimes needed to adjust the number of max pending tasks in the tasks queue.
Modifications:
- Add new constructors to modify the number of allowed pending tasks.
- Add system properties to configure the default values.
Result:
More flexible configuration.
Motivation:
We should merge ThrowableUtils into ThrowableUtil as this name is more consistent with the naming of utility classes in netty.
Modifications:
Merge classes.
Result:
More consistent naming
Motivation:
These methods were recently deprecated. However, they remained in use in several locations in Netty's codebase.
Modifications:
Netty's code will now access the bootstrap config to get the group or child group.
Result:
No impact on functionality.
Motivation:
If a user writes an own nio based transport which uses a special SelectorProvider it is useful to be able to get the SelectorProvider that is used by a NioEventLoop. This way this can be used when implement AbstractChannel.isCompatible(...) and check that the SelectorProvider is the correct one.
Modifications:
Expose the SelectorProvider.
Result:
Be able to get the SelectorProvider used by a NioEventLoop.
Motivation:
We use pre-instantiated exceptions in various places for performance reasons. These exceptions don't include a stacktrace which makes it hard to know where the exception was thrown. This is especially true as we use the same exception type (for example ChannelClosedException) in different places. Setting some StackTraceElements will provide more context as to where these exceptions original and make debugging easier.
Modifications:
Set a generated StackTraceElement on these pre-instantiated exceptions which at least contains the origin class and method name. The filename and linenumber are specified as unkown (as stated in the javadocs of StackTraceElement).
Result:
Easier to find the origin of a pre-instantiated exception.
Motivation:
To better debug why a Selector need to be rebuild it is useful to also log the instance of the Selector.
Modifications:
Add logger instance to the log message.
Result:
More useful log message.
Motivation:
When `ChannelFactory#newChannel` crashed, `AbstractBootstrap#initAndRegister` propagates the exception to the caller instead of failing the promise.
Modifications:
- Catch exceptions from `ChannelFactory#newChannel`.
- Notify promise of such failure.
Result:
`AbstractBootstrap` gracefully handles connect failures.
Motivation:
In case of exception in invokeExceptionCaught() only original exception passed to invokeExceptionCaught() will be logged on any log level.
+ AbstractChannelHandlerContext and CombinedChannelDuplexHandler log different exceptions.
Modifications:
Fix inconsistent logging code and add ability to see both stacktraces on DEBUG level.
Result:
Both handlers log now both original exception and thrown from invokeExceptionCaught. To see full stacktrace of exception thrown from invokeExceptionCaught DEBUG log level must be enabled.
Motivation:
JCTools supports both non-unsafe, unsafe versions of queues and JDK6 which allows us to shade the library in netty-common allowing it to stay "zero dependency".
Modifications:
- Remove copy paste JCTools code and shade the library (dependencies that are shaded should be removed from the <dependencies> section of the generated POM).
- Remove usage of OneTimeTask and remove it all together.
Result:
Less code to maintain and easier to update JCTools and less GC pressure as the queue implementation nt creates so much garbage
Motivation:
`Bootstrap` has a notion of a default resolver group, but it's hidden from the public. To allow callers to reset a `Bootstrap` instance's resolver group, we could either make `DEFAULT_RESOLVER` public, or we could allow callers to pass `null` as an argument to `Bootstrap#resolver(AddressResolverGroup<?>)`. This pull request does the latter.
Modifications:
- Allow `Bootstrap#resolver(AddressResolverGroup<?>)` to accept `null` as an argument
Result:
Callers may pass `null` to `Bootstrap#resolver(AddressResolverGroup<?>)` to cause the `Bootstrap` instance to use its default resolver group.
Motivation:
Sometimes it may be benefitially for an user to specify a custom algorithm when choose the next EventExecutor/EventLoop.
Modifications:
Allow to specify a custom EventExecutorChooseFactory that allows to customize algorithm.
Result:
More flexible api.
Motivation:
We need to ensure we not hold a lock while executor callHandlerRemoved(...) as this may lead to a deadlock if handlerRemoved(...) will call another method in DEfaultChannelPipeline from another thread that will need to obtain the lock as well and wait for the result.
Modifications:
Release the lock before call handlerRemoved0(...).
Result:
No more deadlock possible
Motivation:
We not correctly catched errors during resolving in bootstrap and so may not have notified the future correctly.
Modifications:
Move code into try / catch block and try to fail the promise.
Result:
Promise is always notified
Motivation:
The user may specify to use a different allocator then the default. In this case we need to ensure it is shared when creating the EmbeddedChannel inside of a ChannelHandler
Modifications:
Use the config of the "original" Channel in the EmbeddedChannel and so share the same allocator etc.
Result:
Same type of buffers are used.
Motivation:
There is a small race while adding handlers to the pipeline because callHandlerAddedForAllHandlers() may not be run when the user calls add* but the Channel is already registered.
Modifications:
Ensure we always delay handlerAdded(..) / handlerRemoved(...) until callHandlerAddedForAllHandlers() was called.
Result:
No more race on pipeline modifications possible.
Motivation:
We can remove the volatile keyword from the cached Runnables as at worse these will just be re-created.
Modifications:
Remove volatile.
Result:
Less overhead.
Motivation:
SingleThreadEventExecutor.pendingTasks() will call taskQueue.size() to get the number of pending tasks in the queue. This is not safe when using MpscLinkedQueue as size() is only allowed to be called by a single consumer.
Modifications:
Ensure size() is only called from the EventLoop.
Result:
No more livelock possible when call pendingTasks, no matter from which thread it is done.
Motivation:
While doing 8fe3c83e4c I made a change which disallowed using null as name for handlers in the pipeline (this generated a new name before).
Modifications:
Revert to old behaviour and adding test case.
Result:
Allow null name again
Motivation:
At the moment the user is responsible to increase the writer index of the composite buffer when a new component is added. We should add some methods that handle this for the user as this is the most popular usage of the composite buffer.
Modifications:
Add new methods that autoamtically increase the writerIndex when buffers are added.
Result:
Easier usage of CompositeByteBuf.
Motivation:
EventLoopGroup.register doesn't need the Channel paramter when ChannelPromise is provided as we can get the Channel from ChannelPromise. Resolves#2422.
Modifications:
- Add EventLoopGroup.register(ChannelPromise)
- Deprecate EventLoopGroup.register(Channel, ChannelPromise)
Result:
EventLoopGroup.register is more convenient as people only need to set one parameter.
Motivation:
DefaultChannelPipeline was tightly coupled to AbstractChannel which is not really needed.
Modifications:
Move logic of calling handlerAdded(...) for handlers that were added before the Channel was registered to DefaultChannelPipeline by making it part of the head context.
Result:
Less coupling and so be able to use DefaultChannelPipeline also with other Channel implementations that not extend AbstractChannel
Motivation:
We do a "blind" cast to AbstractChannel in AbstractChannelHandlerContext which we should better no do. It would be better to decouble AbstractChannelHandlerContext from AbstractChannel.
Modifications:
Decouble AbstractChannelHandlerContext from AbstractChannel by move logic to DefaultChannelPipeline
Result:
Less coubling and less casting.
Motivation:
If the user will use addLast(...) on the ChannelPipeline of EmbeddedChannel after its constructor was run it will break the EmbeddedChannel as it will not be able to collect inbound messages and exceptions.
Modifications:
Ensure addLast(...) work as expected by move the logic of handling messages and exceptions ti protected methods of DefaultChannelPipeline and use a custom implementation for EmbeddedChannel
Result:
addLast(...) works as expected when using EmbeddedChannel.
Motivation:
Recycler.recycle(...) should not be used anymore and be replaced by Handle.recycle().
Modifications:
Mark it as deprecated and update usage.
Result:
Correctly document deprecated api.
Motivation:
The Bootstrap class (applies also to AbstractBootstrap and ServerBootstrap) has a few package private getter methods and some things such as #attr() and #options() aren't exposed at all.
Modifications:
Expose "getters" for configured things in a safe-manner via the config() method.
Result:
Easier for the user to check what is configured for a Bootstrap/ServerBootstrap.
Motivation:
The DuplexChannel is currently incomplete and only supports shutting down the output side of a channel. This interface should also support shutting down the input side of the channel.
Modifications:
- Add shutdownInput and shutdown methods to the DuplexChannel interface
- Remove state in NIO and OIO for tracking input being shutdown independent of the underlying transport's socket type. Tracking the state independently may lead to inconsistent state.
Result:
DuplexChannel supports shutting down the input side of the channel
Fixes https://github.com/netty/netty/issues/5175
Motivation:
When a user has multiple EventLoops in an EventLoopGroup and calls pipeline.add* / remove* / replace from an EventLoop that belongs to another Channel it is possible to deadlock if the other EventLoop does the same.
Modification:
- Only ensure the actual modification takes place in a synchronized block and not wait until the handlerAdded(...) / handlerRemoved(...) method is called. This is ok as we submit the task to the executor while still holding the look and so ensure correct order of pipeline modifications.
- Ensure if an AbstractChannelHandlerContext is put in the linked-list structure but the handlerAdded(...) method was not called we skip it until handlerAdded(...) was called. This is needed to ensure handlerAdded(...) is always called first.
Result:
Its not possible to deadlock when modify the DefaultChannelPipeline.
Related: #4333#4421#5128
Motivation:
slice(), duplicate() and readSlice() currently create a non-recyclable
derived buffer instance. Under heavy load, an application that creates a
lot of derived buffers can put the garbage collector under pressure.
Modifications:
- Add the following methods which creates a non-recyclable derived buffer
- retainedSlice()
- retainedDuplicate()
- readRetainedSlice()
- Add the new recyclable derived buffer implementations, which has its
own reference count value
- Add ByteBufHolder.retainedDuplicate()
- Add ByteBufHolder.replace(ByteBuf) so that..
- a user can replace the content of the holder in a consistent way
- copy/duplicate/retainedDuplicate() can delegate the holder
construction to replace(ByteBuf)
- Use retainedDuplicate() and retainedSlice() wherever possible
- Miscellaneous:
- Rename DuplicateByteBufTest to DuplicatedByteBufTest (missing 'D')
- Make ReplayingDecoderByteBuf.reject() return an exception instead of
throwing it so that its callers don't need to add dummy return
statement
Result:
Derived buffers are now recycled when created via retainedSlice() and
retainedDuplicate() and derived from a pooled buffer
Motivation:
We tried to provide the ability for the user to change the semantics of the threading-model by delegate the invoking of the ChannelHandler to the ChannelHandlerInvoker. Unfortunually this not really worked out quite well and resulted in just more complexity and splitting of code that belongs together. We should remove the ChannelHandlerInvoker again and just do the same as in 4.0
Modifications:
Remove ChannelHandlerInvoker again and replace its usage in Http2MultiplexCodec
Result:
Easier code and less bad abstractions.
Motivation:
If a task was submitted when wakenUp value was true, the task didn't get a chance to call Selector#wakeup.
So we need to check task queue again before executing select operation. If we don't, the task might be pended until select operation was timed out.
It might be pended until idle timeout if IdleStateHandler existed in pipeline.
Modifications:
Execute Selector#select in a non-blocking manner if there's a task submitted when wakenUp value was true.
Result:
Every tasks in NioEventLoop will not be pended.
Motivation:
Users sometimes want to use Channel.voidPromise() when write to a Channel to reduce GC-pressure. This should be also possible when write via a ChannelGroup.
Modifications:
Add new write(...) and writeAndFlush(...) overloads which allow to signale that a VoidPromise should be used to write to the Channel
Result:
Users can write with VoidPromise when using ChannelGroup
Motivation:
ChannelHandlerContext, ChannelPipeline and Channel share various method signatures. We should provide an interface to share.
Modifications:
Add ChannelInboundInvoker and ChannelOutboundInvoker and extend these.
Result:
Better API abstraction.
Motivation:
To be more consistent we should use ConnectException when we fail the connect attempt because no LocalServerChannel exists with the given address.
Modifications:
Use correct exception.
Result:
More consistent handling of connection refused between different transports.
Motivation:
Bootstrap.connect(...) tries to obtain the EventLoop of a Channel before it may be registered. This will cause an IllegalStateException. We need to ensure we handle the cause of late registration and not throw in this case.
Modifications:
Ensure we only try to access the EventLoop after the Channel is registered and handle the case of late registration.
Result:
Bootstrap.connect(...) not fails on late registration.
Motivation:
EventExecutor.children uses generics in such a way that an entire colleciton must be cast to a specific type of object. This interface is not very flexible and is impossible to implement if the EventExecutor type must be wrapped. The current usage of this method also does not have any clear need within Netty. The Iterator interface allows for EventExecutor to be wrapped and forces the caller to make assumptions about types instead of building the assumptions into the interface.
Motivation:
- Remove EventExecutor.children and undeprecate the iterator() interface
Result:
EventExecutor interface has one less method and is easier to wrap.
Motivation:
The ChannelHandlerContext.attr(...) and ChannelHandlerContext.hasAttr(...) delegated to Channel for the attributes which is a semantic change compared to 4.0 releases. We should not change the semantic to not break users applications when upgrading to 4.1.0
Modifications:
- Revert semantic change
- Mark ChannelHandlerContext.attr(...) and hasAttr(...) as @deprecated so we can remove these later
Result:
Semantic of attribute operations on ChannelHandlerContext is the same in 4.1 as in 4.0 again.
Motivation:
We should not try to call bind if registration failed.
Modifications:
Only call doBind0(...) when the registration not failed.
Result:
Not try to to bind if the registration failed.
Motivation:
We use channel.unsafe().invoker().executor() in DefaultChannelPipeline.executorSafe(...) which is an unnecessary indirection to channel.eventLoop().
Modifications:
Remove indirection by using channel.eventLoop().
Result:
Cleaner code.
Motivation:
The LateListener logic is prone to infinite loops and relies on being processed in the EventExecutor's thread for synchronization, but this EventExecutor may not be constant. An infinite loop can occur if the EventExecutor's execute method does not introduce a context switch in LateListener.run. The EventExecutor can be changed by classes which inherit from DefaultPromise. For example the DefaultChannelPromise will return w/e EventLoop the channel is registered to, but this EventLoop can change (re-registration).
Modifications:
- Remove the LateListener concept and instead use a single Object to maintain the listeners while still preserving notification order
- Make the result member variable an atomic variable so it can be outside the synchronized(this) blocks
- Cleanup/simplify existing state management code
Result:
Fixes https://github.com/netty/netty/issues/5185
Motivation:
NioDatagramChannelConfig currently uses NetworkChannel in its static { } block and so fails to init on android which not has this class.
Modifications:
Use reflection to load the NetworkChannel.class
Result:
Be able to use NIO Datagram on android as well.
Motivation:
We may produce a NPE due a race that can happen while check if a resolution was done and failed.
Modifications:
Correctly first check if the resultion is done before try to detect if it failed and so remove the race that can produce a NPE.
Result:
No more race possible while resolve address during connect.
Motivation:
Reduce nag warnings when compiling, make it easier for IDEs to display what's deprecated.
Modifications:
Added @Deprecated in a few places
Result:
No more warnings.
Motivation:
If a channel is deregistered from an NioEventLoop the associated SelectionKey is cancelled. If the NioEventLoop has yet to process a pending event as a result of that SelectionKey then the NioEventLoop will see the SelecitonKey is invalid and close the channel. The NioEventLoop should not close a channel if it is not registered with that NioEventLoop.
Modifications:
- NioEventLoop.processSelectedKeys should check that the channel is still registered to itself before closing the channel
Result:
NioEventLoop doesn't close a channel that is no longer registered to it when the SelectionKey is invalid
Fixes https://github.com/netty/netty/issues/5125
Motivation:
Revert d0943dcd30. Delaying the notification of writability change may lead to notification being missed. This is a ABA type of concurrency problem.
Modifications:
- Revert d0943dcd30.
Result:
channelWritabilityChange will be called on every change, and will not be suppressed due to ABA scenario.
Motivation:
Commit 0bc93dd introduced a potential assertion failure, if the deprecated method would be used.
Modifications:
Fix the potential assertion error.
Result:
Regression removed
Motivation:
There is one extra } for WriteBufferWaterMark's javadoc:
{@linkplain #high} high water mark}
The generated javadoc will show the content: "the high high water mark}"
Modifications:
remove the }
Result:
The generated javadoc will show the content: "the high water mark" instead of "the high high water mark}"
Motivation:
Prior to 5b48fc284e setting readPending to false when autoReadClear was called was enough because when/if the EventLoop woke up with a read event we would first check if readPending was true and if it is not, we would return early. Now that readPending will only be set in the EventLoop it is not necessary to check readPending at the start of the read methods, and we should instead remove the OP_READ from the SelectionKey when we also set readPending to false.
Modifications:
- autoReadCleared should call AbstractNioUnsafe.removeReadOp
Result:
NIO is now consistent with EPOLL and removes the READ operation on the selector when autoRead is cleared.
Motivation:
OIO/NIO use a volatile variable to track if a read is pending. EPOLL does not use a volatile an executes a Runnable on the event loop thread to set readPending to false. These mechansims should be consistent, and not using a volatile variable is preferable because the variable is written to frequently in the event loop thread.
OIO also does not set readPending to false before each fireChannelRead operation and may result in reading more data than the user desires.
Modifications:
- OIO/NIO should not use a volatile variable for readPending
- OIO should set readPending to false before each fireChannelRead
Result:
OIO/NIO/EPOLL are more consistent w.r.t. readPending and volatile variable operations are reduced
Fixes https://github.com/netty/netty/issues/5069
Motivation:
When always triggered fireChannelWritabilityChanged() directly when the update the pending bytes in the ChannelOutboundBuffer was made from within the EventLoop. This is problematic as this can cause some re-entrance issue if the user has a custom ChannelOutboundHandler that does multiple writes from within the write(...) method and also has a handler that will intercept the channelWritabilityChanged event and trigger another write when the Channel is writable. This can also easily happen if the user just use a MessageToMessageEncoder subclass and triggers a write from channelWritabilityChanged().
Beside this we also triggered fireChannelWritabilityChanged() too often when a user did a write from outside the EventLoop. In this case we increased the pending bytes of the outboundbuffer before scheduled the actual write and decreased again before the write then takes place. Both of this may trigger a fireChannelWritabilityChanged() event which then may be re-triggered once the actual write ends again in the ChannelOutboundBuffer.
The third gotcha was that a user may get multiple events even if the writability of the channel not changed.
Modification:
- Always invoke the fireChannelWritabilityChanged() later on the EventLoop.
- Only trigger the fireChannelWritabilityChanged() if the channel is still active and if the writability of the channel changed. No need to cause events that were already triggered without a real writability change.
- when write(...) is called from outside the EventLoop we only increase the pending bytes in the outbound buffer (so that Channel.isWritable() is updated directly) but not cause a fireChannelWritabilityChanged(). The fireChannelWritabilityChanged() is then triggered once the task is picked up by the EventLoop as usual.
Result:
No more re-entrance possible because of writes from within channelWritabilityChanged(...) method and no events without a real writability change.
Motivation:
441aa4c575 introduced a bug in transport-native-epoll where readPending is set to false before a read is attempted, but this should happen before fireChannelRead is called. The NIO transport also only sets the readPending variable to false on the first read in the event loop. This means that if the user only calls read() on the first channelRead(..) the select loop will still listen for read events even if the user does not call read() on subsequent channelRead() or channelReadComplete() in the same event loop run. If the user only needs 2 channelRead() calls then by default they will may get 14 more channelRead() calls in the current event loop, and then 16 more when the event loop is woken up for a read event. This will also read data off the TCP stack and allow the peer to queue more data in the local RECV buffers.
Modifications:
- readPending should be set to false before each call to channelRead()
- make NIO readPending set to false consistent with EPOLL
Result:
NIO and EPOLL transport set readPending to false at correct times which don't read more data than intended by the user.
Fixes https://github.com/netty/netty/issues/5082
Motivation:
When a promise is notified that was already added to the ChannelOutboundBuffer and we try to notify it later on we only see a warning that it was notified before. This is often not very useful as we have no idea where it was notified at all. We can do better in case it was failed before (which is most of the times the case) and just also log the cause that was used for it.
Modifications:
Add the cause that was used to notify the promise when we fail to notify it as part of the ChannelOutboundBuffer.
Result:
Easier to debug user errors.
Motivation:
There is a spelling error in FileRegion.transfered() as it should be transferred().
Modifications:
Deprecate old method and add a new one.
Result:
Fix typo and can remove the old method later.
Motivation:
DefaultChannelHandlerInvoker currently blindly cast to AbstractChannelHandlerContext without checking if the ChannelHandlerContext is really a sub-type of it. It should check it first and if not just use slow-path implementation.
Modifications:
Do instanceof check first and if it fails just create a new Runnable instance of used the cached.
Result:
DefaultChannelHandlerInvoker works with any ChannelHandlerContext implementations.
Motivation:
Setting the WRITE_BUFFER_LOW_WATER_MARK before WRITE_BUFFER_HIGH_WATER_MARK results in an internal Exception (appears only in the logs) if the value is larger than the default high water mark value. The WRITE_BUFFER_HIGH_WATER_MARK call appears to have no effect in this context.
Setting the values in the reverse order works.
Modifications:
- deprecated ChannelOption.WRITE_BUFFER_HIGH_WATER_MARK and
ChannelOption.WRITE_BUFFER_LOW_WATER_MARK.
- add one new option called ChannelOption.WRITE_BUFFER_WATER_MARK.
Result:
The high/low water mark values limits caused by default values are removed.
Setting the WRITE_BUFFER_LOW_WATER_MARK before WRITE_BUFFER_HIGH_WATER_MARK results in an internal Exception (appears only in the logs) if the value is larger than the default high water mark value. The WRITE_BUFFER_HIGH_WATER_MARK call appears to have no effect in this context.
Setting the values in the reverse order works.
Motivation:
If a handler is added to the pipeline within ChannelInitializer::initChannel via
addFirst(...) then it will not receive the channelRegistered event. The same
handler added via addLast(...) will receive the event. This different behavior
is unlikely to be expected by users and can cause confusion.
Modifications:
Let ChannelInitializer::channelRegistered propagate the event by passing it to
the pipeline instead of firing it on the ChannelHandlerContext.
Result:
The channelRegistered event is propagated to handlers regardless of the method
used to add it to the pipeline (addFirst/addLast).
Motivation:
NIO now supports a pluggable select strategy, but EPOLL currently doesn't support this. We should strive for feature parity for EPOLL.
Modifications:
- Add SelectStrategy to EPOLL transport.
Result:
EPOLL transport supports SelectStategy.
Motivation:
Under high throughput/low latency workloads, selector wakeups are
degrading performance when the incoming operations are triggered
from outside of the event loop. This is a common scenario for
"client" applications where the originating input is coming from
application threads rather from the socket attached inside the
event loops.
As a result, it can be desirable to defer the blocking select
so that incoming tasks (write/flush) do not need to wakeup
the selector.
Modifications:
This changeset adds the notion of a generic SelectStrategy which,
based on its contract, allows the implementation to optionally
defer the blocking select based on some custom criteria.
The default implementation resembles the original behaviour, that
is if tasks are in the queue `selectNow()` and move on, and if no
tasks need to be processed go into the blocking select and wait
for wakeup.
The strategy can be customized per `NioEventLoopGroup` in the
constructor.
Result:
High performance client applications are now given the chance to
customize for how long the actual selector blocking should be
deferred by employing a custom select strategy.
Motivation:
There is no need to make DefaultChannelId package private as it may be useful for the user. For example EmbeddedChannel allows to inject a ChannelId when it is constructed. For this case the user can just use DefaultChannelId.
Modifications:
Change visibility of DefaultChannelId to public.
Result:
It's possible to create a new instance of DefaultChannelId by the user.
Motivation:
We need to ensure we run all pending tasks before doing any flush in writeOutbound(...) to ensure all pending tasks are run first. Also we should remove the assert of the future and just add a listener to it so it is processed later if needed. This is true as a user may schedule a write for later execution.
Modifications:
- Remove assert of future in writeOutbound(...)
- Correctly run pending tasks before doing the flush and also before doing the close of the channel.
- Add unit tests to proof the defect is fixed.
Result:
Correclty handle the situation of delayed writes.
Motivation:
cf171ff525 introduced a change in behavior when dealing with closing channel in the read loop. This changed behavior may use stale state to determine if a channel should be shutdown and may be incorrect.
Modifications:
- Revert the usage of potentially stale state
Result:
Closing a channel in the read loop is based upon current state instead of potentially stale state.
Motivation:
Often the user uses EmbeddedChannel within unit tests where the only "important" thing is to know if any pending messages were in the buffer and then release these.
We should provide methods for this so the user not need to manually loop through these and release.
Modifications:
Add methods to easily handle releasing of messages.
Result:
Less boiler-plate code for the user to write.
Motivation:
If an error occurs during a write operation then DefaultHttp2ConnectionEncoder.FlowControlledData will clear the CoalescingBufferQueue which will reset the queue's readable bytes to 0. To recover from an error the DefaultHttp2RemoteFlowController will attempt to return bytes to the flow control window, but since the frame has reset its own size this will lead to invalid flow control accounting.
Modifications:
- DefaultHttp2ConnectionEncoder.FlowControlledData should not reset its size if an error occurs
Result:
No more flow controller errors due to DefaultHttp2ConnectionEncoder.FlowControlledData setting its size to 0 if an error occurs.
Motivation:
PromiseAggregator's API allows for the aggregate promise to complete before the user is done adding promises. In order to support this use case the API structure would need to change in a breaking manner.
Modifications:
- Deprecate PromiseAggregator and subclasses
- Introduce PromiseCombiner which corrects these issues
Result:
PromiseCombiner corrects the deficiencies in PromiseAggregator.
Motivation:
PendingWriteQueue should guard against re-entrant writes once
removeAndFailAll() is run.
Modifications:
removeAndFailAll() should repeat until the queue is finally empty.
Result:
assertEmpty() will always hold.
Motivation:
We should guard users from using Unsafe methods from outside the EventLoop if not designed to do so.
Modifications:
Add asserts
Result:
Easier for users to detect miss-use.
Motivation:
e2f5012 added unit tests which did not verify the buffer was released as it was intended to.
Modification:
- Unit tests must verify release is called
Result:
Unit tests enforce that ByteBufs are released.
Motivation:
DefaultChannelHandlerInvoker.invokeWrite calls a utility method validatePromise which may throw if the arguments are not valid. If this method throws then the message will not be released.
Modifications:
- If an exception is thrown the message should be released
Result:
No more leak in DefaultChannelHandlerInvoker.invokeWrite
Motivation:
See #3746.
Modifications:
Fork SpscLinkedQueue and SpscLinkedAtomicQueue from JCTools based on 7846450e28
Result:
Add SpscLinkedQueue and SpscLinkedAtomicQueue and apply it in LocalChannel.
Motiviation:
We should ensure that handlerAdded(...) and handlerRemoved(...) is always called from the EventExecutor that also invokes the other methods of the ChannelHandler. Also we need to ensure we always call handlerAdded(...) before any other method can be calld to ensure correct ordering.
Motifications:
- Ensure that the right thread is used to call the methods
- Ensure correct ordering
- Add tests
Result:
Respect the thread-model for handlerAdded(...) and handlerRemoved(...) and preserve correct ordering in all cases.
Motivation:
The implementation of obtaining the best possible mac address is very good. There are many sub-par implementations proposed on stackoverflow.
While not strictly a netty concern, it would be nice to offer this util also to netty users.
Modifications:
extract DefaultChannelId#defaultMachineId code obtaining the "best" mac into a new helper called MacAddress, keep the random bytes fallback in DefaultChannelID.
Result:
New helper available.