Motivation:
To make it possible to experiment with alternative buffer implementations, we need a way to abstract away the concrete buffers used throughout most of the Netty pipelines, while still having a common currency for doing IO in the end.
Modification:
- Introduce an ByteBufConvertible interface, that allow arbitrary objects to convert themselves into ByteBuf objects.
- Every place in the code, where we did an instanceof check for ByteBuf, we now do an instanceof check for ByteBufConvertible.
- ByteBuf itself implements ByteBufConvertible, and returns itself from the asByteBuf method.
Result:
It is now possible to use Netty with alternative buffer implementations, as long as they can be converted to ByteBuf.
This has been verified elsewhere, with an alternative buffer implementation.
Motivation:
- Underlying buffer usages might be erroneous when releasing them internaly
in HttpPostMultipartRequestDecoder.
2 bugs occurs:
1) Final File upload seems not to be of the right size.
2) Memory, even in Disk mode, is increasing continuously, while it shouldn't.
- Method `getByte(position)` is too often called within the current implementation
of the HttpPostMultipartRequestDecoder.
This implies too much activities which is visible when PARANOID mode is active.
This is also true in standard mode.
Apply the same fix on buffer from HttpPostMultipartRequestDecoder to HttpPostStandardRequestDecoder
made previously.
Finally in order to ensure we do not rewrite already decoded HttpData when decoding
next ones within multipart, we must ensure the buffers are copied and not a retained slice.
Modification:
- Add some tests to check consistency for HttpPostMultipartRequestDecoder.
Add a package protected method for testing purpose only.
- Use the `bytesBefore(...)` method instead of `getByte(pos)` in order to limit the external
access to the underlying buffer by retrieving iteratively the beginning of a correct start
position.
It is used to find both LF/CRLF and delimiter.
2 methods in HttpPostBodyUtil were created for that.
The undecodedChunk is copied when adding a chunk to a DataMultipart is loaded.
The same buffer is also rewritten in order to release the copied memory part.
Result:
Just for note, for both Memory or Disk or Mixed mode factories, the release has to be done as:
for (InterfaceHttpData httpData: decoder.getBodyHttpDatas()) {
httpData.release();
factory.removeHttpDataFromClean(request, httpData);
}
factory.cleanAllHttpData();
decoder.destroy();
The memory used is minimal in Disk or Mixed mode. In Memory mode, a big file is still
in memory but not more in the undecodedChunk but its own buffer (copied).
In terms of benchmarking, the results are:
Original code Benchmark Mode Cnt Score Error Units
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderBigAdvancedLevel thrpt 6 0,152 ± 0,100 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderBigDisabledLevel thrpt 6 0,543 ± 0,218 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderBigParanoidLevel thrpt 6 0,001 ± 0,001 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderBigSimpleLevel thrpt 6 0,615 ± 0,070 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderHighAdvancedLevel thrpt 6 0,114 ± 0,063 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderHighDisabledLevel thrpt 6 0,664 ± 0,034 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderHighParanoidLevel thrpt 6 0,001 ± 0,001 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderHighSimpleLevel thrpt 6 0,620 ± 0,140 ops/ms
New code Benchmark Mode Cnt Score Error Units
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderBigAdvancedLevel thrpt 6 4,037 ± 0,358 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderBigDisabledLevel thrpt 6 4,226 ± 0,471 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderBigParanoidLevel thrpt 6 0,875 ± 0,029 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderBigSimpleLevel thrpt 6 4,346 ± 0,275 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderHighAdvancedLevel thrpt 6 2,044 ± 0,020 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderHighDisabledLevel thrpt 6 2,278 ± 0,159 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderHighParanoidLevel thrpt 6 0,174 ± 0,004 ops/ms
HttpPostMultipartRequestDecoderBenchmark.multipartRequestDecoderHighSimpleLevel thrpt 6 2,370 ± 0,065 ops/ms
In short, using big file transfers, this is about 7 times faster with new code, while
using high number of HttpData, this is about 4 times faster with new code when using Simple Level.
When using Paranoid Level, using big file transfers, this is about 800 times faster with new code, while
using high number of HttpData, this is about 170 times faster with new code.
Motivation:
It is possible for two separate threads to race on recycling an object.
If this happens, the object might be added to a WeakOrderQueue when it shouldn't be.
The end result of this is that an object could be acquired multiple times, without a recycle in between.
Effectively, it ends up in circulation twice.
Modification:
We fix this by making the update to the lastRecycledId field of the handle, an atomic state transition.
Only the thread that "wins" the race and succeeds in their state transition will be allowed to recycle the object.
The others will bail out on their recycling.
We use weakCompareAndSet because we only need the atomicity guarantee, and the program order within each thread is sufficient.
Also, spurious failures just means we won't recycle that particular object, which is fine.
Result:
Objects no longer risk circulating twice due to a recycle race.
This fixes#10986
Motivation:
It is not uncommon to run Netty on OS X without the specific
`MacOSDnsServerAddressStreamProvider`. The current log message is too
verbose because it prints a full stack trace on the console while a
simple logging message would have been enough.
Modifications:
- Print a `WARN` message when `MacOSDnsServerAddressStreamProvider`
class is not found;
- Print a `ERROR` message with a stack trace when the class was found
but could not be loaded due to some other reasons;
Result:
Less noise in logs.
Motivation:
If two different headers end up in the same hash bucket, and you are iterating the header that is not the first in the bucket, and you use the iterator to remove the first element returned from the iterator, then you would get a NullPointerException.
Modification:
Change the DefaultHeaders iterator remove method, to re-iterate the hash bucket and unlink the entry once found, if we don't have any existing iteration starting point.
Also made DefaultHeaders.remove0 package private to avoid a synthetic method indirection.
Result:
Removing from iterators from DefaultHeaders is now robust towards hash collisions.
Motivation:
When TLSv1.3 is used (or TLS_FALSE_START) together with mTLS the handshake is considered successful before the server actually did verify the key material that was provided by the client. If the verification fails we currently will just close the stream without any extra information which makes it very hard to debug on the client side.
Modifications:
- Propagate SSLExceptions to the active streams
- Add unit test
Result:
Better visibility into why a stream was closed
Motivation:
#10995
when `io.netty.channel.unix.Socket` is ipv6 and join a multicast group with ipv4 address will cause `io.netty.channel.ChannelException: setsockopt() failed: Invalid argument` (at least in `Linux centos.dev 4.18.0-240.10.1.el8_3.x86_64 #1 SMP Mon Jan 18 17:05:51 UTC 2021 x86_64 x86_64 x86_64 GNU/Linux`)
Modification:
check if target group address is ipv6 before call `io.netty.channel.epoll.LinuxSocket#joinGroup(java.net.InetAddress, java.net.NetworkInterface, java.net.InetAddress)`
I'm not sure if this modification is currect, but i checked source code of java NIO
```
Java_sun_nio_ch_Net_canJoin6WithIPv4Group0(JNIEnv* env, jclass cl)
{
#if defined(__APPLE__)
/* IPV6_ADD_MEMBERSHIP can be used to join IPv4 multicast groups */
return JNI_TRUE;
#else
/* IPV6_ADD_MEMBERSHIP cannot be used to join IPv4 multicast groups */
return JNI_FALSE;
#endif
}
```
seems ipv6 address can't join ipv4 group except osx
Result:
test on `Linux 3.10.0-514.el7.x86_64 #1 SMP Tue Nov 22 16:42:41 UTC 2016 x86_64 x86_64 x86_64 GNU/Linux` exception ` setsockopt() failed: Invalid argument` has fixed
Fixes#10995
Motivation:
The `!fastOpen` part of `active || !fastOpen` is always false.
Modification:
- Remove `!fastOpen` and keep only `active` as a `flushAtEnd` flag for
`startHandshakeProcessing`;
- Update comment;
Result:
Simplified `flushAtEnd` flag computation in `SslHandler#handlerAdded`.
Support TCP Fast Open for clients and make SslHandler take advantage
Motivation:
- TCP Fast Open allow us to send a small amount of data along side the initial SYN packet when establishing a TCP connection.
- The TLS Client Hello packet is small enough to fit in there, and is also idempotent (another requirement for using TCP Fast Open), so if we can save a round-trip when establishing TLS connections when using TFO.
Modification:
- Add support for client-side TCP Fast Open for Epoll, and also lowers the Linux kernel version requirements to 3.6.
- When adding the SslHandler to a pipeline, if TCP Fast Open is enabled for the channel (and the channel is not already active) then start the handshake early by writing it to the outbound buffer.
- An important detail to note here, is that the outbound buffer is not flushed at this point, like it would for normal handshakes. The flushing happens later as part of establishing the TCP connection.
Result:
- It is now possible for clients (on epoll) to open connections with TCP Fast Open.
- The SslHandler automatically detects when this is the case, and now send its Client Hello message as part of the initial data in the TCP Fast Open flow when available, saving a round-trip when establishing TLS connections.
Co-authored-by: Colin Godsey <crgodsey@gmail.com>
Motivation:
The current netty's graalvm dependency version is too low, so you need to upgrade the plugin
Modification:
Upgrade Graalvm version to the latest version, please review this pr, thank you
Result:
Use up-to-date version.
Co-authored-by: xingrufei <xingrufei@sogou-inc.com>
Motivation:
The testGlobalWriteThrottle is flaky and failed our build multiple times now. Lets disable it for now until we had time to investigate
Modifications:
Disable flaky test
Result:
Less failures during build
Motivation:
When etcResolver/hosts files are parsed, FileInputStream.read(...) is internally called by
- UnixResolverDnsServerAddressStreamProvider#parseEtcResolverSearchDomains
- UnixResolverDnsServerAddressStreamProvider#parseEtcResolverOptions
- HostsFileParser#parse
This will cause the error below when BlockHound is enabled
reactor.blockhound.BlockingOperationError: Blocking call! java.io.FileInputStream#readBytes
at java.io.FileInputStream.readBytes(FileInputStream.java)
at java.io.FileInputStream.read(FileInputStream.java:255)
Modifications:
- Add whitelist entries to BlockHound configuration
- Fix typos in UnixResolverDnsServerAddressStreamProvider
- Add tests
Result:
Fixes#11004
* Revert "Add a profile for debugging tests that run from Maven (#11011)"
This reverts commit 83895f0f
The same functionality is already natively available in surefire, by adding the `-Dmaven.surefire.debug` flag to Maven.
* Update surefire/failsafe version
These new versions copes better when our tests prints to STDOUT, and disturbs the progress processing that these plugins do.
Motivation:
At the moment we always set SSL_OP_NO_TICKET when building our context. The problem with this is that this also disables resumption for TLSv1.3 in BoringSSL as it only supports stateless resumption for TLSv1.3 which uses tickets.
We should better clear this option when TLSv1.3 is enabled to be able to resume sessions. This is also inline with the OpenJDK which enables this for TLSv1.3 by default as well.
Modifications:
Check for enabled protocols and if TLSv1.3 is set clear SSL_OP_NO_TICKET.
Result:
Be able to resume sessions for TLSv1.3 when using BoringSSL.
Motivation:
File.createTempFile(String, String)` will create a temporary file in the system temporary directory if the 'java.io.tmpdir'. The permissions on that file utilize the umask. In a majority of cases, this means that the file that java creates has the permissions: `-rw-r--r--`, thus, any other local user on that system can read the contents of that file.
This can be a security concern if any sensitive data is stored in this file.
This was reported by Jonathan Leitschuh <jonathan.leitschuh@gmail.com> as a security problem.
Modifications:
Use Files.createTempFile(...) which will use safe-defaults when running on java 7 and later. If running on java 6 there isnt much we can do, which is fair enough as java 6 shouldnt be considered "safe" anyway.
Result:
Create temporary files with sane permissions by default.
Motivation:
ReadOnlyByteBuf and ReadOnlyByteBuffer are not writable, but their writableBytes
related methods return non-zero values. This is inconsistent with the behavior
of these buffer types.
Modifications:
- ReadOnlyByteBuf and ReadOnlyByteBuffer writableBytes related methods should
return 0
Result:
More correct ReadOnlyByteBuf and ReadOnlyByteBuffer behavior with respect to
writability.
Motivation:
DecodeHexBenchmark needs to be less branch-predictor friendly
to mimic the "real" behaviour while decoding
Modifications:
DecodeHexBenchmark uses a larger sets of inputs, picking them at
random on each iteration and the benchmarked method is made !inlineable
Result:
DecodeHexBenchmark is more trusty while showing the performance
difference between different decoding methods
Motivation:
when customer need large of 'byteBuf.capacity' in [7168, 8192], the size of 'chunk.subpages' may be inflated when large of byteBuf be released, not consistent with other 'byteBuf.capacity'
Modification:
when maxNumElems == 1 need consider remove from pool
Result:
Fixes#10896.
Co-authored-by: zxingy <zxingy@servyou.com.cn>
Motivation:
The changes introduced in 1c230405fd4f7c445773b662beeccebc18f85f98 did cause various issues while the fix itself is not considered critical. For now it is considered the best to just rollback and investigate more.
Modifications:
- Revert changes done in 1c230405fd4f7c445773b662beeccebc18f85f98 (and later) for
the post decoders.
- Ensure we give memory back to the system as soon as possible in a safe manner
Result:
Fixes https://github.com/netty/netty/issues/10973
Motivation:
It was not 100% clear who is responsible calling close() on the InputStream.
Modifications:
Clarify javadocs.
Result:
Related to https://github.com/netty/netty/issues/10974
Co-authored-by: Chris Vest <christianvest_hansen@apple.com>
Motivation:
TLS_FALSE_START slightly changes the "flow" during handshake which may cause suprises for the end-user. We should better disable it by default again and later add a way to enable it for the user.
Modification:
This reverts commit 514d349e1fa5a057e815a5f3ac6a7e3f3aa19784.
Result:
Restore "old flow" during TLS handshakes.
Allow and skip null handlers when adding a vararg list of handlers
Motivation
Allowing null handlers allows for more convenient idioms in
conditionally adding handlers, e.g.,
ch.pipeline().addLast(
new FooHandler(),
condition ? new BarHandler() : null,
new BazHandler()
);
Modifications
* Change addFirst(..) and addLast(..) to skip null handlers, rather than
break or short-circuit.
* Add new unit tests.
Result
* Makes addFirst(..) and addLast(..) behavior more consistent
* Resolves https://github.com/netty/netty/issues/10728
Motivation:
We should add some more NULL checks to ensure we not SEGV in some cases
Modifications:
Add more NULL checks
Result:
More robust implementation
Motivation:
We didnt correctly filter out TLSv1.3 ciphers when TLSv1.3 is not enabled.
Modifications:
- Filter out ciphers that are not supported due the selected TLS version
- Add unit test
Result:
Fixes https://github.com/netty/netty/issues/10911
Co-authored-by: Bryce Anderson <banderson@twitter.com>
Motivation:
The testWriteAfterShutdownOutputNoWritabilityChange() failed a few times on the CI randomly. Let's skip it for now while we investigate and see if there is anything we can do to make the test less flaky on the CI.
Modifications:
Add @Ignore on the testWriteAfterShutdownOutputNoWritabilityChange method
Result:
Less flaky CI
Motivation:
We did have the architecture hardcoded in the dependency which is not correct as this will let the build fail on Applie Silicion (m1). Also we did miss some dependencies on other BSDs
Modifications:
- Fix classifier
- Add missing dependencies
Result:
Be able to build on Apple Silicon (m1)
Motivation:
We need to ensure we copy the attributes and options when bootstrap the channel as otherwise we may change the underlying Entry.
This is similar to what was reported in https://github.com/netty/netty-incubator-codec-quic/issues/152.
Modifications:
- Do a copy and re-use methods
- Add unit tests
Result:
Don't affect attributes / options of channels that are already bootstrapped
Motivation:
If the given port is already bound, the PcapWriteHandlerTest will sometimes fail.
Modification:
Use a dynamic port using `0`, which is more reliable
Result:
Less Flaky
Motivation:
We currently append extensions to the user defined "sec-websocket-extensions" headers. This can cause duplicated entries.
Modifications:
* Replace existing `WebSocketExtensionUtil#appendExtension` private helper with a new `computeMergeExtensionsHeaderValue`. User defined parameters have higher precedence.
* Add tests (existing method wasn't tested)
* Reuse code for both client and server side (code was duplicated).
Result:
No more duplicated entries when user defined extensions overlap with the ones Netty generated.
Motivation:
Exception occurs in the MQTT message builder class (`io.netty.handler.codec.mqtt.MqttMessageBuilders`) when trying to create a message with packetId > 32767
Modification:
-add method that takes int
- deprecate old methods that take short.
Result:
Fixes#10929 .
Motivation:
We should override the get*ApplicationProtocol() methods in ReferenceCountedOpenSslEngine to make it easier for users to obtain the selected application protocol
Modifications:
Add missing overrides
Result:
Easier for the user to get the selected application protocol (if any)
Motivation:
We should expose some methods as protected to make it easier to write custom SslContext implementations.
This will be reused by the code for https://github.com/netty/netty-incubator-codec-quic/issues/97
Modifications:
- Add protected to some static methods which are useful for sub-classes
- Remove some unused methods
- Move *Wrapper classes to util package and make these public
Result:
Easier to write custom SslContext implementations
Motivation:
https://github.com/netty/netty/pull/10765 added support for push promise and priority frames when using the Http2FrameCodec. Unfortunally it didnt correctly guard against the possibility to receive a priority frame for an non-existing stream, which resulted in a NPE
Modifications:
- Ignore priority frame for non existing stream
- Correctly implement equals / hashcode for DefaultHttp2PriorityFrame
- Add unit tests
Result:
Fixes https://github.com/netty/netty/issues/10941
Motivation:
We had multiple bugs in JdkZlibDecoder which could lead to decoding errors when the data was received in a fragmentated manner.
Modifications:
- Correctly handle skipping of comments
- Correctly handle footer / header decoding
- Add unit test that verifies the correct handling of fragmentation
Result:
Fixes https://github.com/netty/netty/issues/10875
Motivation:
We produced a lot of noise during loading native libraries as we always included the stacktrace if we could not load by one mechanism. We should better just not include the stacktrace in the debugging logging if one mechanism fails. We will log all the stacks anyway when all of the mechanisms fail.
Modifications:
Make logging less aggressive
Result:
Less confusing behaviour for the end-user
Motivation:
We should use GracefulShutdown when we try to create a stream and fail it because the stream space is exhausted as we may still want to process the active streams.
Modifications:
- Use graceful shutdown
- Add unit test
Result:
More graceful handling of stream creation failure due stream space exhaustation
Motivation:
Internally UnixResolverDnsServerAddressStreamProvider#parse calls FileInputStream.read(...)
when parsing the etcResolverFiles.
This will cause the error below when BlockHound is enabled
reactor.blockhound.BlockingOperationError: Blocking call! java.io.FileInputStream#readBytes
at java.io.FileInputStream.readBytes(FileInputStream.java)
at java.io.FileInputStream.read(FileInputStream.java:255)
Modifications:
- Add whitelist entry to BlockHound configuration
- Add test
Result:
Fixes#10925
Motiviation:
We need to ensure we only register the methods for unix-native-common once as otherwise it may have strange side-effects.
Modifications:
- Add extra method that should be called to signal that we need to register the methods. The registration will only happen once.
- Adjust code to make use of it.
Result:
No more problems due incorrect registration of these methods.
Motivation:
As shown in the past we need to verify we actually can load the native as otherwise we may introduce regressions.
Modifications:
- Add new maven module which tests loading of native modules
- Add job that will also test loading on aarch64
Result:
Less likely to introduce regressions related to loading native code in the future
Motivation:
We need to ensure we always drain the error stack when a callback throws as otherwise we may pick up the error on a different SSL instance which uses the same thread.
Modifications:
- Correctly drain the error stack if native method throws
- Add a unit test which failed before the change
Result:
Always drain the error stack