MadelineProto/prime.php
2016-08-04 23:34:00 +02:00

266 lines
8.2 KiB
PHP

<?php
set_include_path(get_include_path().PATH_SEPARATOR.dirname(__FILE__).DIRECTORY_SEPARATOR.'libpy2php');
require_once 'libpy2php.php';
class PrimeModule
{
public function __construct()
{
$this->smallprimeset = array_unique($this->primesbelow(100000));
$this->_smallprimeset = 100000;
$this->smallprimes = $this->primesbelow(10000);
}
public function primesbelow($N)
{
$res = [];
for ($i = 2; $i <= $N; $i++) {
if ($i % 2 != 1 && $i != 2) {
continue;
}
$d = 3;
$x = sqrt($i);
while ($i % $d != 0 && $d < $x) {
$d += 2;
}
if ((($i % $d == 0 && $i != $d) * 1) == 0) {
$res[] = $i;
}
}
return $res;
}
public function isprime($n, $precision = 7)
{
if (($n == 1) || (($n % 2) == 0)) {
return false;
} elseif (($n < 1)) {
throw new Exception('Out of bounds, first argument must be > 0');
} elseif (($n < $this->_smallprimeset)) {
return in_array($n, $this->smallprimeset);
}
$d = ($n - 1);
$s = 0;
while (($d % 2) == 0) {
$d = floor($d / 2);
$s++;
}
$break = false;
foreach (pyjslib_range($precision) as $repeat) {
$a = rand(2, ($n - 2));
$x = posmod(pow($a, $d), $n);
if (($x == 1) || ($x == ($n - 1))) {
continue;
}
foreach (pyjslib_range($s - 1) as $r) {
$x = posmod(pow($x, 2), $n);
if (($x == 1)) {
return false;
}
if (($x == ($n - 1))) {
$break = true;
}
}
if (!$break) {
return false;
}
}
return true;
}
// taken from https://github.com/enricostara/telegram-mt-node/blob/master/lib/security/pq-finder.js
public function factorization($num) {
$zero = new \phpseclib\Math\BigInteger(0);
$one = new \phpseclib\Math\BigInteger(1);
$two = new \phpseclib\Math\BigInteger(2);
$three = new \phpseclib\Math\BigInteger(3);
$prime = new \phpseclib\Math\BigInteger();
for ($i = 0; $i < 3; $i++) {
$q = new \phpseclib\Math\BigInteger((random_int(0, 128) & 15) + 17);
$x = new \phpseclib\Math\BigInteger(random_int(0, 1000000000) + 1);
$y = $x;
$lim = 1 << ($i + 18);
for ($j = 1; $j < $lim; $j++) {
$a = $x;
$b = $x;
$c = $q;
while (!$b->equals($zero)) {
if (b.repr[0] & 1) {
c.addEquals(a);
if (c.gt(num)) {
c = c.subtract(num);
}
}
a.addEquals(a);
if (a.gt(num)) {
a = a.subtract(num);
}
b = b.shiftRight(1);
}
$x = $c;
$z = $y.gt(x) ? y.subtract(x) : x.subtract(y);
$prime = z.gcd(num, a, b);
if (!prime.eql(BigInteger.One())) {
break;
}
if ((j & (j - 1)) === 0) {
$y = $x;
}
}
if (prime.gt(BigInteger.One())) {
break;
}
}
$cofactor = num.divide(prime)[0];
$_pq = cofactor.gt(prime) ? [prime, cofactor] : [cofactor, prime];
return _$pq;
}
public function pollard_brent($n)
{
$zero = new \phpseclib\Math\BigInteger(0);
$one = new \phpseclib\Math\BigInteger(1);
$two = new \phpseclib\Math\BigInteger(2);
$three = new \phpseclib\Math\BigInteger(3);
if ($n->powMod($one, $two)->toString() == '0') {
return 2;
}
if ($n->powMod($one, $three)->toString() == '0') {
return 3;
}
$big = new \phpseclib\Math\BigInteger();
$max = $n->subtract($one);
list($y, $c, $m) = [new \phpseclib\Math\BigInteger(87552211475113995), new \phpseclib\Math\BigInteger(330422027228888537), new \phpseclib\Math\BigInteger(226866727920975483)];
//[$big->random($one, $max), $big->random($one, $max), $big->random($one, $max)];
list($g, $r, $q) = [$one, $one, $one];
while ($g->equals($one)) {
$x = $y;
$params = ['y' => $y, 'two' => $two, 'c' => $c, 'one' => $one, 'n' => $n];
$r->loopforeach(function ($i, $params) {
$params['y'] = $params['y']->powMod($params['two'], $params['n'])->add($params['c'])->powMod($params['one'], $params['n']);
}, $params);
each($params);
$k = $zero;
while ($k->compare($r) == -1 && $g->equals($one)) {
$ys = $y;
$params = ['x' => $x, 'y' => $y, 'two' => $two, 'c' => $c, 'one' => $one, 'n' => $n, 'q' => $q];
$m->min($r->subtract($k))->loopforeach(function ($i, $params) {
$params['y'] = $params['y']->powMod($params['two'], $params['n'])->add($params['c'])->powMod($params['one'], $params['n']);
$params['q'] = $params['q']->multiply($params['x']->subtract($params['y'])->abs())->powMod($params['one'], $params['n']);
}, $params);
each($params);
$g = $q->gcd($n);
$k = $k->add($m);
}
$r = $r->multiply($two);
}
die;
if ($g->equals($n)) {
while (true) {
$ys = $ys->powMod($two, $n)->add($c)->powMod($one, $n);
$g = $x->subtract($ys)->abs()->gcd($n);
if ($g->compare($one) == 1) {
break;
}
}
}
return $g;
}
public function primefactors($n, $sort = false)
{
$factors = [];
$n = new \phpseclib\Math\BigInteger(1724114033281923457);
$one = new \phpseclib\Math\BigInteger(1);
$two = new \phpseclib\Math\BigInteger(2);
$limit = $n->root()->add($one);
foreach ($this->smallprimes as $checker) {
$checker = new \phpseclib\Math\BigInteger($checker);
if ($limit->compare($checker) == -1) {
break;
}
while ($n->modPow($one, $checker)->toString() == '0') {
$factors[] = $checker;
$n = $n->divide($checker)[0];
$limit = $n->root()->add($one);
if ($limit->compare($checker) == -1) {
break;
}
}
}
if ($n->compare($two) == -1) {
return $factors;
}
while ($n->compare($two) == 1) {
if ($n->isprime()) {
$factors[] = $n;
break;
}
$factor = $this->pollard_brent($n);
$factors[] = $this->primefactors($factor);
$n = floor($n / $factor);
}
if ($sort) {
$factors = sort($factors);
}
return $factors;
}
public function factorization($n)
{
$factors = [];
foreach (primefactors($n) as $p1) {
if (isset($factors[$p1])) {
$factors[$p1] += 1;
} else {
$factors[$p1] = 1;
}
}
return $factors;
}
public function totient($n)
{
$totients = [];
if (($n == 0)) {
return 1;
}
if (isset($totients[$n])) {
return $totients[$n];
}
$tot = 1;
foreach (factorization($n) as $p => $exp) {
$tot *= (($p - 1) * pow($p, ($exp - 1)));
}
$totients[$n] = $tot;
return $tot;
}
public function gcd($a, $b)
{
if (($a == $b)) {
return $a;
}
while (($b > 0)) {
list($a, $b) = [$b, posmod($a, $b)];
}
return $a;
}
public function lcm($a, $b)
{
return floor(abs(($a * $b)) / $this->gcd($a, $b));
}
}