Motivation:
There should be a unit test for when the stream ID wraps around and is 'too large' or negative.
The lack of unit test masked an issue where this was not being throw.
Modifications:
Add a unit test to cover the case where creating a remote and local stream where stream id is 'too large'
Result:
Unit test scope increases.
Motivation:
Using a needless local copy of keys.length.
Modifications:
Using keys.length explicitly everywhere.
Result:
Slight performance improvement of hashIndex.
Motivation:
The hashIndex method currently uses a conditional to handle negative
keys. This could be done without a conditional to slightly improve
performance.
Modifications:
Modified hashIndex() to avoid using a conditional.
Result:
Slight performance improvement to hashIndex().
Motivation:
IntObjectHashMap throws an exception when using negative values for
keys.
Modifications:
Changed hashIndex() to normalize the index if the mod operation returns
a negative number.
Result:
IntObjectHashMap supports negative key values.
Motivation:
Make it much more readable code.
Modifications:
- Added states of decompression.
- Refactored decode(...) method to use this states.
Result:
Much more readable decoder which looks like other compression decoders.
Motivation
Issue #3004 shows that "=" character was not supported as it should in
the HttpPostRequestDecoder in form-data boundary.
Modifications:
Add 2 methods in StringUtil
split with maxParts: String split with a max parts only (to prevent multiple '=' to
be source of extra split while not needed)
substringAfter: String part after delimiter (since first part is not needed)
Use those methods in HttpPostRequestDecoder. Change and the
HttpPostRequestDecoderTest to check using a boundary beginning with "=".
Results:
The fix implies more stability and fix the issue.
Motivation:
Currently when receiving DATA/HEADERS frames, we throw Http2Exception (a
connection error) instead of Http2StreamException (stream error). This
is incorrect according to the HTTP/2 spec.
Modifications:
Updated various places in the encoder and decoder that were out of spec
WRT connection/state checking.
Result:
Stream state verification is properly handled.
Related: #2034
Motivation:
Some users want to mock Bootstrap (or ServerBootstrap), and thus they
should not be final but be fully overridable and extensible.
Modifications:
Remove finals wherever possible
Result:
@daschl is happy.
Related: #2964
Motivation:
Writing a zero-length FileRegion to an NIO channel will lead to an
infinite loop.
Modification:
- Do not write a zero-length FileRegion by protecting with proper 'if'.
- Update the testsuite
Result:
Another bug fixed
Motivation:
We see occational failures in the datagram tests saying 'address already
in use' when we attempt to bind on a port returned by
TestUtils.getFreePort().
It turns out that TestUtils.getFreePort() only checks if TCP port is
available.
Modifications:
Also check if UDP port is available, so that the datagram tests do not
fail because of the 'address already in use' error during a bind
attempt.
Result:
Less chance of datagram test failures
Motivation:
Twitter hpack has upgraded to 0.9.1, we should upgrade to the latest.
Modifications:
Updated the parent pom to specify the dependency version. Updated the
http2 pom to use the version specified by the parent.
Result:
HTTP/2 updated to the latest hpack release.
Motivation:
The default name resolver attempts to resolve the bad host name (destination.com) and actually succeeds, making the ProxyHandlerTest fail.
Modification:
Use NoopNameResolverGroup instead.
Result:
ProxyHandlerTest passes again.
Motivation:
So far, we relied on the domain name resolution mechanism provided by
JDK. It served its purpose very well, but had the following
shortcomings:
- Domain name resolution is performed in a blocking manner.
This becomes a problem when a user has to connect to thousands of
different hosts. e.g. web crawlers
- It is impossible to employ an alternative cache/retry policy.
e.g. lower/upper bound in TTL, round-robin
- It is impossible to employ an alternative name resolution mechanism.
e.g. Zookeeper-based name resolver
Modification:
- Add the resolver API in the new module: netty-resolver
- Implement the DNS-based resolver: netty-resolver-dns
.. which uses netty-codec-dns
- Make ChannelFactory reusable because it's now used by
io.netty.bootstrap, io.netty.resolver.dns, and potentially by other
modules in the future
- Move ChannelFactory from io.netty.bootstrap to io.netty.channel
- Deprecate the old ChannelFactory
- Add ReflectiveChannelFactory
Result:
It is trivial to resolve a large number of domain names asynchronously.
Motivation:
DnsQueryEncoder does not encode the 'additional resources' section at all, which contains the pseudo-RR as defined in RFC 2671.
Modifications:
- Modify DnsQueryEncoder to encode the additional resources
- Fix a bug in DnsQueryEncoder where an empty name is encoded incorrectly
Result:
A user can send an EDNS query.
Motivation:
When a datagram packet is sent to a destination where nobody actually listens to,
the server O/S will respond with an ICMP Port Unreachable packet.
The ICMP Port Unreachable packet is translated into PortUnreachableException by JDK.
PortUnreachableException is not a harmful exception that prevents a user from sending a datagram.
Therefore, we should not close a datagram channel when PortUnreachableException is caught.
Modifications:
- Do not close a channel when the caught exception is PortUnreachableException.
Result:
A datagram channel is not closed unexpectedly anymore.
Related issue: #1133
Motivation:
There is no support for client socket connections via a proxy server in
Netty.
Modifications:
- Add a new module 'handler-proxy'
- Add ProxyHandler and its subclasses to support SOCKS 4a/5 and HTTP(S)
proxy connections
- Add a full parameterized test for most scenarios
- Clean up pom.xml
Result:
A user can make an outgoing connection via proxy servers with only
trivial effort.
Motivation:
JDK's exception messages triggered by a connection attempt failure do
not contain the related remote address in its message. We currently
append the remote address to ConnectException's message, but I found
that we need to cover more exception types such as SocketException.
Modifications:
- Add AbstractUnsafe.annotateConnectException() to de-duplicate the
code that appends the remote address
Result:
- Less duplication
- A transport implementor can annotate connection attempt failure
message more easily
Motivation:
Socks5CmdRequestDecoder uses ByteBuf.array() naively assuming that the
array's base offset is always 0, which is not the case.
Modification:
- Allocate a new byte array and copy the content there instead
Result:
Another bug fixed
Motivation:
An IPv6 string can have a zone index which is followed by the '%' sign.
When a user passes an IPv6 string with a zone index,
NetUtil.createByteArrayFromIpAddressString() returns an incorrect value.
Modification:
- Strip the zone index before conversion
Result:
An IPv6 string with a zone index is decoded correctly.
Motivation:
There's no way to generate the name of a handler being newly added
automatically and reliably.
For example, let's say you have a routine that adds a set of handlers to
a pipeline using addBefore() or addAfter(). Because addBefore() and
addAfter() always require non-conflicting non-null handler name, making
the multiple invocation of the routine on the same pipeline is
non-trivial.
Modifications:
- If a user specifies null as the name of the new handler,
DefaultChannelPipeline generates one.
- Update the documentation of ChannelPipeline to match the new behavior
Result:
A user doesn't need to worry about name conflicts anymore.
Motivation:
There's no way for a user to get the encoder and the decoder of an
HttpClientCodec. The lack of such getter methods makes it impossible to
remove the codec handlers from the pipeline correctly.
For example, a user could add more than one HttpClientCodec to the
pipeline, and then the user cannot easily decide which encoder and
decoder to remove.
Modifications:
- Add encoder() and decoder() method to HttpClientCodec which returns
HttpRequestEncoder and HttpResponseDecoder respectively
- Also made the same changes to HttpServerCodec
Result:
A user can distinguish the handlers added by multiple HttpClientCodecs
easily.
Motiviation:
Before this change, autoRead was a volatile boolean accessed directly. Any thread that invoked the DefaultChannelConfig#setAutoRead(boolean) method would read the current value of autoRead, and then set a new value. If the old value did not match the new value, some action would be immediately taken as part of the same method call.
As volatile only provides happens-before consistency, there was no guarantee that the calling thread was actually the thread mutating the state of the autoRead variable (such that it should be the one to invoke the follow-up actions). For example, with 3 threads:
* Thread 1: get = false
* Thread 1: set = true
* Thread 1: invokes read()
* Thread 2: get = true
* Thread 3: get = true
* Thread 2: set = false
* Thread 2: invokes autoReadCleared()
* Event Loop receives notification from the Selector that data is available, but as autoRead has been cleared, cancels the operation and removes read interest
* Thread 3: set = true
This results in a livelock - autoRead is set true, but no reads will happen even if data is available (as readyOps). The only way around this livelock currently is to set autoRead to false, and then back to true.
Modifications:
Write access to the autoRead variable is now made using the getAndSet() method of an AtomicIntegerFieldUpdater, AUTOREAD_UPDATER. This also changed the type of the underlying autoRead variable to be an integer, as no AtomicBooleanFieldUpdater class exists. Boolean logic is retained by assuming that 1 is true and 0 is false.
Result:
There is no longer a race condition between retrieving the old value of the autoRead variable and setting a new value.
Motiviation:
The HTTP/2 server example is not using the outbound flow control. It is instead using a FrameWriter directly.
This can lead to flow control errors and other comm. related errors
Modifications:
-Force server example to use outbound flow controller
Result:
-Server example should use follow flow control rules.
Motivation:
InboundHttp2ToHttpAdapterTest swaps non-volatile CountDownLatches in
handlers, which seems to cause a race condition that can lead to missing
messages.
Modifications:
Make CountDownLatch variables in InboundHttp2ToHttpAdapterTest volatile.
Result:
InboundHttp2ToHttpAdapterTest should be more stable.
Motivation:
The current GOAWAY methods are in each endpoint and are a little
confusing since their called connection.<endpoint>.goAwayReceived().
Modifications:
Moving GOAWAY methods to connection with more clear names
goAwaySent/goAwayReceived.
Result:
The GOAWAY method names are more clear.
Motivation:
Websocket clients can request to speak a specific subprotocol. The list of
subprotocols the client understands are sent to the server. The server
should select one of the protocols an reply this with the websocket
handshake response. The added code verifies that the reponded subprotocol
is valid.
Modifications:
Added verification of the subprotocol received from the server against the
subprotocol(s) that the user requests. If the user requests a subprotocol
but the server responds none or a non-requested subprotocol this is an
error and the handshake fails through an exception. If the user requests
no subprotocol but the server responds one this is also marked as an
error.
Addiontionally a getter for the WebSocketClientHandshaker in the
WebSocketClientProtocolHandler is added to enable the user of a
WebSocketClientProtocolHandler to extract the used negotiated subprotocol.
Result:
The subprotocol field which is received from a websocket server is now
properly verified on client side and clients and websocket connection
attempts will now only succeed if both parties can negotiate on a
subprotocol.
If the client sends a list of multiple possible subprotocols it can
extract the negotiated subprotocol through the added handshaker getter (WebSocketClientProtocolHandler.handshaker().actualSubprotocol()).
Motivation:
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#connack
In MQTT 3.1, MQTT server must send a CONNACK with return code if CONNECT
request contains an invalid client identifier or an unacceptable protocol
version. The return code is one of MqttConnectReturnCode.
But, MqttDecoder throws DecoderException when CONNECT request contains
invalid value without distinguish situations. This makes it difficult
for codec-mqtt users to send a response with return code to clients.
Modifications:
Added exceptions for client identifier rejected and unacceptable
protocol version. MqttDecoder will throw those exceptions instead of
DecoderException.
Result:
Users of codec-mqtt can distinguish which is invalid when CONNECT
contains invalid client identifier or invalid protocol version. And, users can
send CONNACK with return code to clients.
Motivation:
I was not fully reassured that whether everything works correctly when a websocket client receives the websocket handshake HTTP response and a websocket frame in a single ByteBuf (which can happen when the server sends a response directly or shortly after the connect). In this case some parts of the ByteBuf must be processed by HTTP decoder and the remaining by the websocket decoder.
Modification:
Adding a test that verifies that in this scenaria the handshake and the message are correctly interpreted and delivered by Netty.
Result:
One more test for Netty.
The test succeeds - No problems
Motivation:
In MQTT 3.1 specification, "The Client Identifier (Client ID) is between
1 and 23 characters long, and uniquely identifies the client to the
server". But, current client id validation length is 0~23. It must be
1~23. The empty string is invalid client id in MQTT 3.1
Modifications:
Change isValidClientId method. Add MIN_CLIENT_ID_LENGTH.
Result:
The validation check for client id length is between 1 and 23.
Motivation:
It is often helpful to measure the performance of connections, e.g. the
latency and the throughput. This can be performed through benchmarks.
Modification:
This adds a simple but configurable benchmark for websockets into the
example directory. The Netty WebSocket server will echo all received
websocket frames and will provide an HTML/JS page which serves as the
client for the benchmark.
The benchmark also provides a verification mode that verifies the sent
against the received data. This can be used for the verification ob
websocket frame encoding and decoding funtionality.
Result:
A benchmark is added in form a further Netty websocket example.
With this benchmark it is easily possible to measure the performance between Netty and a browser
Motivation:
The WebSocketClientProtocolHandshakeHandler never releases the received handshake response.
Modification:
Release the message in a finally block.
Result:
No more leak
Motivation:
The WebSocket08FrameEncoder contains an optimization path for small messages which copies the message content into the header buffer to avoid vectored writes. However this path is in the current implementation never taken because the target buffer is preallocated only for exactly the size of the header.
Modification:
For messages below a certain treshold allocate the buffer so that the message can be directly copied. Thereby the optimized path is taken.
Result:
A speedup of about 25% for 100byte messages. Declines with bigger message sizes. I have currently set the treshold to 1kB which is a point where I could still see a few percent speedup, but we should also avoid burning too many CPU cycles.
Motivation:
Websocket performance is to a large account determined through the masking
and unmasking of frames. The current behavior of this in Netty can be
improved.
Modifications:
Perform the XOR operation not bytewise but in int blocks as long as
possible. This reduces the number of necessary operations by 4. Also don't
read the writerIndex in each iteration.
Added a unit test for websocket decoding and encoding for verifiation.
Result:
A large performance gain (up to 50%) in websocket throughput.
Motivation:
There is a NPE due to the order of builder initialization in the class.
Modifications:
-Correct the ordering of initialization and building to avoid NPE.
Result:
No more NPE in construction.
Motivation:
This was lost in recent changes, just adding it back in.
Modifications:
Added listener() accessor to Http2ConnectionDecoder and the default
impl.
Result:
The Http2FrameListener can be obtained from the decoder.
Motivation:
Currently, Http2LifecycleManager implements the exception handling logic
which makes it difficult to extend or modify the exception handling
behavior. Simply overriding exceptionCaught() will only affect one of
the many possible exception paths. We need to reorganize the exception
handling code to centralize the exception handling logic into a single
place that can easily be extended by subclasses of
Http2ConnectionHandler.
Modifications:
Made Http2LifecycleManager an interface, implemented directly by
Http2ConnectionHandler. This adds a circular dependency between the
handler and the encoder/decoder, so I added builders for them that allow
the constructor of Http2ConnectionHandler to set itself as the lifecycle
manager and build them.
Changed Http2LifecycleManager.onHttpException to just
onException(Throwable) to simplify the interface. This method is now the
central control point for all exceptions. Subclasses now only need to
override onException() to intercept any exception encountered by the
handler.
Result:
HTTP/2 has more extensible exception handling, that is less likely to
see exceptions vanish into the ether.
Motivation:
Some tests occasionally appear unstable, throwing a
org.mockito.exceptions.misusing.UnfinishedStubbingException. Mockito
stubbing does not work properly in multi-threaded environments, so any
stubbing has to be done before the threads are started.
Modifications:
Modified tests to perform any custom stubbing before the client/server
bootstrap logic executes.
Result:
HTTP/2 tests should be more stable.
Motivation:
The HTTP/2 example can timeout at the client waiting for a response due
to the server not flushing after writing the response.
Modifications:
Updated the server's HelloWorldHttp2Handler to flush after writing the
response.
Result:
The HTTP/2 example runs successfully.
Motivation:
Some tests do not properly assert that all requests have been
sent/received, so the failures messages may be misleading.
Modifications:
Adding missing asserts to HTTP/2 tests for awaiting requests and
responses.
Result:
HTTP/2 tests properly assert message counts.
Motiviation:
PR https://github.com/netty/netty/pull/2948 missed a collection to synchronize in the HTTP/2 unit tests.
Modifications:
synchronize the collection that was missed
Result:
Missed collection is syncronized and initial size is corrected
The HTTP/2 tests have been unstable, in particular the
Http2ConnectionRoundtripTest.
Modifications:
Modified fields in Http2TestUtil to be volatile.
Result:
Tests should (hopefully) be more stable.
Motivation:
Currently the last read/write throughput is calculated by first division,this will be 0 if the last read/write bytes < interval,change the order will get the correct result
Modifications:
Change the operator order from first do division to multiplication
Result:
Get the correct result instead of 0 when bytes are smaller than interval
Motivation:
HTTP/2 codec does not properly test exception passed to
exceptionCaught() for instanceof Http2Exception (since the exception
will always be wrapped in a PipelineException), so it will never
properly handle Http2Exceptions in the pipeline.
Also if any streams are present, the connection close logic will execute
twice when a pipeline exception. This is because the exception logic
calls ctx.close() which then triggers the handleInActive() logic to
execute. This clears all of the remaining streams and then attempts to
run the closeListener logic (which has already been run).
Modifications:
Changed exceptionCaught logic to properly extract Http2Exception from
the PipelineException. Also added logic to the closeListener so that is
only run once.
Changed Http2CodecUtil.toHttp2Exception() to avoid NPE when creating
an exception with cause.getMessage().
Refactored Http2ConnectionHandler to more cleanly separate inbound and
outbound flows (Http2ConnectionDecoder/Http2ConnectionEncoder).
Added a test for verifying that a pipeline exception closes the
connection.
Result:
Exception handling logic is tidied up.
Motivation:
The HTTP/2 unit tests are collecting responses read events which are happening in a multithreaded environment.
These collections are currently not synchronized or thread safe and are resulting in verification failures.
Modifications:
-Modify unit tests that use collections to store results for verifiction to be thread safe
Result:
Tests should not fail because of syncrhonization issues while verifying expected results.
Motivation:
According to the websocket specification peers may send a close frame when
they detect a protocol violation (with status code 1002). The current
implementation simply closes the connection. This update should add this
functionality. The functionality is optional - but it might help other
implementations with debugging when they receive such a frame.
Modification:
When a protocol violation in the decoder is detected and a close was not
already initiated by the remote peer a close frame is
sent.
Result:
Remotes which will send an invalid frame will now get a close frame that
indicates the protocol violation instead of only seeing a closed
connection.